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Abstract— Driver monitoring systems improve the safety of
the car by alerting the driver when unsafe behavior is detected.
To understand the driver and passengers, it is important
to estimate the location of their body keypoints and detect
the presence of seat belts. This information can be used to
ensure that the driver is facing forward and all passengers
are properly wearing their seat belts. Modern computer vision
methods perform well in the task of human pose estimation
for varied environments. However, in-vehicle scenarios present
unique difficulties due to varying lighting conditions, camera
placement, and lack of specific in-domain training data. We
propose the diverse in-vehicle seat belt and driver keypoint (MSP-
DISK) dataset. This corpus consists of images sourced from
online video-sharing websites that contain a variety of vehicle
interiors, subjects, illumination conditions, camera angles, and
camera qualities. Each image contains annotations for the
visible upper-body keypoints for the driver and all passengers
in the vehicle and a binary mask indicating the location of the
seat belt for all subjects. We implement a lightweight computer
vision model jointly trained on this dataset to detect seat belts
and body keypoint locations. For seat belt detection, we obtain
an intersection over union (IoU) equal to 27.8%. For the body
keypoint detection, we obtain an F1-score of 0.773.

I. INTRODUCTION

Unsafe driving behaviors such as distracted driving and
improper seat belt usage lead to thousands of deaths and
injuries every year. In 2020, 13% of all vehicle accidents
in the U.S. involved distracted driving, causing over 3,000
deaths and 300,000 injuries according to the the National
Highway Traffic Safety Administration (NHTSA) [28]. Like-
wise, proper usage of seat belts saved over 14,000 lives in
the U.S. in 2017 [27]. Failing to comply with safe driving
guidelines can result in avoidable fatalities. The implementa-
tion of a driver monitoring system (DMS) that detects unsafe
driving behaviors [21], [22] and alerts the driver when unsafe
behavior is detected [30] can be instrumental in preventing
such deaths.

Existing DMS components include seat belt latch detection
and warning mechanisms, which are mandated in all new
passenger vehicles in the U.S. [7]. However, these systems
can be tricked by latching the seat belt and wearing the belt
behind the shoulder. Also, there is no existing standard DMS
component that measures driver distraction. A solution is to
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use artificial intelligence to detect unsafe driver behavior. An
artificial intelligence-based system can be robust to variations
in driver behavior to more accurately detect unsafe situations.
Such a system may combine the data collected from various
sensors within the vehicle to predict whether the driver is
paying adequate attention to the road and whether all seat
belts are properly fastened. A dashboard-mounted camera
facing the vehicle cabin, for example, can monitor the driver
and passengers and capture visual information relating to
pose and seat belt status.

Recent advances in 2D human pose estimation (HPE) have
led to models achieving state-of-the-art performance (see for
example results on the MSCOCO Keypoints Challenge [2],
[3], [24]). However, conventional HPE approaches focus on
a broader domain than in-vehicle scenarios. For an intelligent
DMS, we want an HPE model that can accurately detect the
pose of human subjects in the vehicle to determine whether
the driver is paying attention to the road. For example, the
rotation of the driver’s shoulders may indicate that the driver
is facing the back of the vehicle instead of the road. The
detection of the hands can also indicate whether the drivers
have their hands on the steering wheel [20]. Using deep
learning techniques, a model trained on human pose data can
learn to accurately predict the pose of human subjects within
an image. Training a model on domain-specific data from an
in-vehicle camera can prepare the model for the challenges of
the in-vehicle domain, such as illumination variations (e.g.,
glare, low-light conditions, and abrupt illumination changes
as the vehicle moves), non-ideal camera angles for the task,
and occlusions within the vehicle.

Unfortunately, while several studies have collected pose
and/or seat belt data in an in-vehicle domain, few datasets
are publicly available. Furthermore, the available resources
are often videos recorded in the same vehicle, using the same
camera and experimental setup. For the safety of conducting
these in-person experiments, it is necessary to control as
many aspects of the experiment. Therefore, many studies that
collect visual in-vehicle data perform controlled trials where
each subject drives the same vehicle while being recorded.
One consequence of using the same vehicle is that the vehicle
interior, seat belt color, and seat belt texture are consistent
for all the collected images. A model trained on this data
may overfit to the representation of a seat belt in a particular
vehicle but perform worse on seat belt detection in another
vehicle. To remedy these issues, we introduce the diverse in-
vehicle seat belt and driver keypoint (MSP-DISK) dataset, a
publicly available dataset of diverse, in-vehicle images from



a variety of video sources.
The MSP-DISK dataset includes 7,704 images from 542

different videos containing upper-body keypoint locations
for the driver and all passengers in the vehicle. The upper-
body joints are the most often visible joints when using a
dashboard-mounted camera, and these are the joints that can
indicate where the attention of the driver is focused. The
dataset also includes binary masks indicating the positions
of all the seat belts within the image. The images are sourced
from 542 unique videos that include different camera angles,
vehicle interiors, drivers, and passengers. To demonstrate
the effectiveness of our dataset, we implement a lightweight
deep learning model which simultaneously predicts both the
upper-body keypoint locations and seat belt locations. We
achieve an F1-score of 0.773 for the keypoint detection, and
an intersection over union (IoU) equal to 27.8%.

II. RELATED WORK

Our approach combines two computer vision problems:
human pose estimation and seat belt segmentation. This
section discusses existing HPE databases and databases de-
signed for seat belt segmentation.

A. Human Pose Estimation

2D human pose estimation is the task of estimating a
subject’s pose from a 2D image. This task is particularly
relevant because any image captured with a standard RGB
camera will have only 2D information of the scene, and
these cameras are the most widely accessible. Human pose
estimation requires a rich dataset because of the wide variety
of body shapes, skin tones, and possible poses that a human
can display. Furthermore, factors such as illumination and
occlusion can affect the amount of information available
to any HPE model in naturalistic settings. Some human
poses necessarily occlude certain parts of the body from an
observer (i.e. a camera). For example, a person facing to the
side will have only one side of their body visible. Thus, any
HPE model must be trained on a sufficiently diverse set of
pose images to estimate the pose of a human subject. We
make a distinction between single-person and multi-person
HPE datasets. In single-person pose estimation, each image
features exactly one human subject, so the model must detect
the keypoints of that individual. Multi-person HPE is a more
difficult task, because the model must not only identify each
human subject in the image, but also uniquely assign each
detected keypoint to the correct human subject. This section
discusses HPE inside and outside of a vehicle. We reserve
the discussion of the datasets that provide both keypoint and
seat belt annotations for Section II-C.

While our main interest is in HPE datasets that feature
in-vehicle images, most corpora include human poses in
different contexts. Chen et al. [4] compare existing HPE
databases in an extensive survey of 2D HPE databases. Three
of the most popular databases are the MPII dataset [1],
the Leeds Sports Pose dataset [16] [15], and the MSCOCO
dataset [24]. These are large datasets characterized by a
diverse range of backgrounds, activities, and subjects.

Our work focuses on HPE within the cabin of a vehicle, so
datasets containing in-vehicle images with labeled keypoints
are especially relevant. However, the number of datasets
available for the specific in-vehicle domain is less than
for the general HPE domain. Yoo et al. [34] compiled a
survey of in-vehicle HPE datasets. The driver pose esti-
mation (DriPE) dataset is a 2D HPE dataset collected in a
naturalistic driving setting, with 19 different subjects driving
around a city or closed course. Because the driving trials are
not simulated, the data exhibit natural illumination changes
commonly observed during motor vehicle travel. Drive&Act
[25] is a large publicly available dataset that includes 3D
keypoints and action labels for videos of subjects partaking
in distracted driving behaviors in a parked car. Nighttime
driving often yields low-light conditions in the vehicle cabin,
which poses difficulty for cameras that rely on visible light.
Some approaches use time-of-flight cameras to determine
the distance from an object to the camera. This depth data
can provide the 3D location of objects within an image,
providing the resources to explore the task of 3D human
pose estimation. In the Drive&Act database [25], each scene
has six different synchronized camera views from different
positions within the vehicle. However, this dataset does not
include the location of the seat belt. Another dataset that
serves as a resource for 3D HPE is the SVIRO database
[8]. This corpus is a synthetic dataset featuring 3D-models
of passengers and objects in the rear seat of a vehicle.
The synthetic generation process allows for a variety of
textures and backgrounds to be implemented in the vehicle
as opposed to a single vehicle for some naturalistic datasets.
As this dataset focuses on rear-seat occupancy, there are no
samples containing the driver or front-seat passengers. The
corpus does not include seat belt annotations.

B. Seat Belt Segmentation

Computer vision problems involving seat belts include de-
tection and segmentation tasks. It also includes formulations
that aim to classify whether the seat belt is correctly worn in
an image. Among these problems, a further distinction lies in
whether the images are sourced from within the vehicle, as
in our approach, or if the images come from traffic cameras
outside of the vehicle.

Our approach involves in-vehicle images, which often
yield higher-quality images for seat belt detection because
of the subjects’ closer proximity to the camera. As with
in-vehicle pose estimation, few publicly available datasets
exist that target in-vehicle seat belt detection. Some publicly
available datasets exist from Roboflow, but these include
bounding boxes for seat belt detection rather than pixel-
wise segmentation masks [9] [29]. Jha et al. [14] used
synthetic data to surmount this data deficit, augmenting a
small annotated dataset with a large number of procedurally
generated synthetic seat belt images.

Studies using traffic cameras outside of the vehicle have
useful applications in surveillance and seat belt compli-
ance enforcement. Common approaches include using edge-
detection algorithms to detect the seat belt’s characteristic



TABLE I
TABLE OF EXISTING HPE AND SEAT BELT DATASETS.

Database Context Pose Seat belt Number of Samples Publicly Available
MPII [1] Out-of-vehicle 16 keypoints n/a 25k Images Yes
DriPE [11] Naturalistic driving Yes No 10k images Yes
NADS-Net [6] Naturalistic driving Yes Yes unknown No
Kim et al. [18] Naturalistic driving Yes Yes unknown No
MSP-DISK (ours) Naturalistic driving 8 keypoints Yes 7,704 images Yes

edges [12], [35]. Other studies have used deep learning
approaches such as convolutional neural networks (CNNs)
to learn a visual representation of the seat belt [5], [10],
[36].

C. Combined HPE and Seat Belt Detection

Recent studies have combined the problems of in-vehicle
HPE and seat belt detection to jointly predict both using
a single model. Chun et al. [6] proposed a novel model
architecture referred to as NADS-Net. This deep learning
network is a lightweight CNN-based model using a feature
pyramid network for keypoint and seat belt detection. The
dataset contains videos of 100 drivers both in stationary ve-
hicles and while driving, with pose and seat belt annotations
for every frame. Kim et al. [18] used time-of-flight cameras
combined with RGB cameras to efficiently annotate a dataset
for 3D HPE, combining 3D body keypoint detection, seat
belt segmentation, and seat belt correctness classification in
a single task. In both datasets, all participants were recorded
driving the same vehicle equipped with the necessary cam-
eras and sensors. To increase the variety in vehicle interiors
and seat belt colors/textures within the dataset, our proposed
dataset contains samples from various vehicles, each with
different seat color/texture, seat belt color/texture, camera
placement, and camera quality. This increased diversity helps
to prevent any model from overfitting to any particular
vehicle interior. This will create a more robust model for
in-vehicle monitoring systems. Additionally, our dataset will
be released publicly. Table I summarizes the attributes of the
most relevant datasets to ours.

III. THE MSP-DISK CORPUS

A. Data Collection

The dataset consists of videos collected from online video-
sharing websites showing the interior of a car while a driver
is operating a vehicle. These videos feature a variety of
subjects, vehicles, illuminations, angles, and settings. We
searched video-sharing websites with keywords related to
rideshare applications, driving instruction, in-vehicle talk
shows, and vlogs. We collected a total of 542 videos, from
which we assigned 290 videos to the train set, 81 videos to
the development set, and 171 videos to the test set. Table II
shows the partitions proposed for this corpus.

Many of the videos contain sequences with different cam-
era angles. The position of the camera within the vehicle may
affect whether a part of a subject’s body is visible or occluded
in a given frame, thus, affecting the information available for
model prediction. Figure 1 shows an example of two alternate

TABLE II
SUMMARY OF THE PARTITIONS OF THE MSP-DISK DATASET.

Partition Videos Frames

Train 290 5,038

Development 81 1,095

Test 171 1,571

Total 542 7,704

camera viewpoints from the same source video. To prepare a
model that is robust to multiple camera angles, we attempt to
include frames from different camera angles within the same
video. To achieve this goal, we sample frames at a constant
rate throughout the video. The sampling rate varies with the
number of unique camera angles in the video. We sample
fewer images from videos with few camera points of view
and sample more images from videos with multiple camera
angles. This strategy ensures that the dataset is not dominated
by images from any particular camera location. Then, we
group frames into similar clusters using a structural similarity
metric [33]. Images with a high structural similarity score
are more likely to show the same camera viewpoint, so we
cluster these images together. Then, we manually discard any
frames from scenes that show the outside of the vehicle or do
not contain any subject, retaining the remaining frames for
our dataset. The train set has 5,038 frames, the development
set has 1,095 frames, and the test set has 1,571 frames.

B. Data Annotation

The annotations for each frame include the pixel-wise lo-
cations of 8 joints (right/left wrist, right/left elbow, right/left
shoulder, neck, and head) and a binary mask indicating the
location of the seat belt. To obtain ground truth for body
joint locations, we used OpenPose [3] to obtain predictions
for body joints on each frame. Then, we manually correct
the predictions from OpenPose and reject lower-body joint
keypoints. To reduce the complexity of the keypoint detection
in low-quality images, we combine all keypoints from the
head area (nose, eyes, and ears) into a single keypoint located
at the center of the head.

For the seat belt, we first assume that all seat belt pixels
will be colored similarly within an image despite variations
due to illumination differences. We use an unsupervised
image segmentation approach proposed by Kanezaki [17]
to group regions in the image with similar pixel colors.
Then, annotators manually selected the region corresponding
to the seat belt and corrected any errors in the algorithm’s
segmentation.



(a) Driver-side view

(b) Passenger-side view

Fig. 1. Example of different camera viewpoints within the same video.
Alternative camera angles provide more variety in the data. Subject faces
are blurred for anonymity in this publication.

IV. LIGHTWEIGHT DETECTION MODEL

We demonstrate the potential use of this corpus by training
a lightweight model for keypoint detection and seat belt
segmentation. The motivation for building a lightweight
model that performs both tasks at the same time is to reduce
the computation needed to run a DMS model in the car,
which is important given all the other electronic components
competing for resources in the vehicle. Furthermore, we
expect that simultaneously predicting keypoint and seat belt
locations have advantages. When the seat belt is correctly
worn, its position is relatively fixed with respect to the
location of the subject’s shoulders and head. Because of this
observation, we hope that a model which predicts keypoint
locations (including shoulders) should have an advantage
when identifying the location of a seat belt within an image.
If the shoulder positions are known, the most likely place
that a seat belt exists is the region bounded by one shoulder
and the lower part of the body.

To implement the model, we use a U-Net architecture
[31] with four upsampling/downsampling layers. Figure 2
shows the model. The input to the model is a single 256x144
image. In each downsampling layer, each dimension of the
image is reduced by a factor of two. Then, the model has
a series of upsampling steps. In each step, we increase the
image dimensions by a factor of two. The model has resid-
ual connections between the corresponding downsampling
and upsampling layers. We concatenate the two same-sized
images, combining the information from the downsampling
stage with the upsampling stage in each step.

In many models, the output of keypoint prediction is
the pixel-wise (x, y) location of the keypoint within the
image. Seat belt detection is a segmentation problem, so the

Fig. 2. The lightweight model used to simultaneously predict body
keypoints and segment seat belt location. The approach is implemented with
the U-Net model [31]. The outputs of the model are nine channel masks
with the predicted locations for the eight body keypoints and the seat belt.

output must be an image with pixel values indicating model
confidence that a seat belt exists in that pixel. Therefore,
we frame the keypoint detection problem as a segmentation
problem, increasing the level of similarity between the two
tasks. Instead of detecting a single pixel location for each
keypoint, our model predicts a region of confidence for the
location of each joint. If the prediction is correct, the center
of this prediction region should be close to the ground truth
pixel location for the keypoint. Our formulation creates one
channel image for each of the predictions of the eight joints,
and one channel for the seat belt. Therefore, the output of
the model is a 9-channel image, with the first 8 channels
representing the model predictions for the 8 upper-body
keypoints, and the 9th channel representing the model’s seat
belt predictions. Each channel is a grayscale image with pixel
values ranging between 0 and 1. Higher pixel values indicate
higher model confidence that the corresponding keypoint or
seat belt is located in that pixel.

Our model has 1,947,993 parameters. The number of
parameters is significantly lower than other popular com-
puter vision algorithms. As a reference, OpenPose [3] has
21,979,692 parameters.

A. Training Procedure

To prepare our model for predicting a confidence region
near each keypoint, we pre-process the training data. We
first crop each training image into one single-person image
for each subject within the image. First, we select a region of
the image that is 1.5x the width of the subject in the image.
The subject’s width is defined as the distance between the
leftmost and rightmost keypoints. We then randomly shift
the region left or right to prevent the central keypoints (i.e.
head, neck) from being located in the same position within
every training image. This step discourages the model from
learning keypoint positions from absolute location within an
image, rather than by identifying features. The height of this
region is defined to maintain a 16:9 height:width ratio for
the crop, where the subject’s head is similarly randomly
placed along the vertical axis. Finally, we resize the region
to 256x144 pixels, representing one single-person training
sample.

For each ground truth keypoint in the train set, we generate



Fig. 3. Eight keypoint annotation heatmaps and seat belt annotation overlaid
on a test image.

a 256x144 mask image with a 2D Gaussian map centered
around the point using equation 1, where x and y represent
each pixel in the image, and x0 and y0 are the ground truth
keypoint locations at the center of the Gaussian distribution.
σX and σY are the standard deviations in the horizontal and
vertical directions, respectively. By setting σX = σY , the
distribution becomes a circle centered at the keypoint. We
scale σX and σY relative to the size of the subject in the
image. If the head and both shoulders are visible, each σ
is set to 1/8th of the average distance from each shoulder
to the head. If at least one shoulder is not visible, we use
a default σ = 20 pixels. Figure 3 shows the 9 annotation
channels overlaid on a training image.

f(x, y) = exp
(
−
(
(x− x0)

2

2σ2
X

+
(y − y0)

2

2σ2
Y

))
(1)

For training, all 8 keypoint mask images and the ground
truth seat belt mask are concatenated together in a 256x144x9
tensor. We vertically stack these channels into a 256x1296
image sent to the model as the ground truth labels for each
cropped training image. Therefore, the output of the model
is a 256x1296 image which, when split into a 256x144x9
tensor, contains one channel for each upper-body keypoint
and one channel for the seat belt predictions. We also
add a copy of each training image with a horizontal flip

augmentation. In the horizontally flipped image, we swap
the ground truth image channels corresponding to right-side
keypoints and left-side keypoints. For example, the right
wrist annotation is swapped with the left wrist annotation
after the horizontal flip is applied, since flipping the image
changes the subject’s left side to be the right side. This
augmentation improves the model’s ability to generalize the
representation of a wrist by including all left wrist and right
wrist samples under both keypoint labels.

B. Loss Function

The training loss function is a weighted combination of
three loss terms. One term acts on the 8 keypoint detection
channels, one term acts on the seat belt detection channel,
and the final term acts on all channels equally.

For the keypoint detection loss, we use a weighted im-
plementation of the L2 loss between the predictions and the
ground truth Gaussian masks. The values assigned to each
pixel in both the prediction map and the ground truth mask
range from 0 to 1. A value of 0 indicates a low confidence
that the pixel contains the particular keypoint or seat belt,
and a value of 1 signifies a high confidence in the presence
of the keypoint or seat belt. The loss from pixels where the
ground truth values are greater or equal to 0.5 (high pixels)
is divided by the number of high pixels, and the loss from
pixels where the ground truth value are less than 0.5 (low
pixels) is divided by the number of low pixels. This approach
prevents the magnitude of the loss from being dominated by
a large number of low pixels. We calculate this loss only for
the predictions on the eight keypoint channels of the model’s
output.

For the seat belt segmentation loss, we use a modified
version of the focal loss [23] proposed by Law et al. [19] for
object detection. This loss is calculated between the ground
truth seat belt channel and the model’s seat belt prediction
channel.

The final loss component is an approximation of the
intersection over union (IoU) metric as proposed by van
Beers et al. [32]. This loss approximates the IoU metric in
a way that is differentiable for gradient calculations. IoU
is defined as the ratio of the area of the intersection of
two regions to the area of their union. This ratio is always
between 0 and 1, where 1 represents a perfect overlap
between the prediction and the ground truth. We define the
IoU loss to be 1 - IoU. We apply this loss function to all 9
channels of the output.

L = α∗KeypointLoss+β ∗SeatBeltLoss+γ ∗ IoULoss
(2)

V. EXPERIMENTAL RESULTS
To evaluate the usefulness of our dataset, we train a model

on the train set with and without the augmentation strategy
of adding a flipped copy of each training sample. For all
the experiments, we set α = β = γ = 3.5 (Eq. 2). We
evaluate the performance on our test set. We also evaluate
the performance of OpenPose [3], which is trained on the



TABLE III
KEYPOINT AND SEAT BELT DETECTION. THE KEYPOINT DETECTION PERFORMANCE IS MEASURED WITH PRECISION AND RECALL AND F1-SCORE.

THE SEAT BELT PERFORMANCE IS MEASURED WITH IOU.

Keypoint OpenPose Ours – Without flip augmentation Ours - With flip augmentation
Recall Prec. F1 Recall Prec. F1 Recall Prec. F1

R Wrist 0.448 0.438 0.443 0.356 0.360 0.358 0.444 0.474 0.459
R Elbow 0.678 0.663 0.670 0.621 0.686 0.652 0.710 0.780 0.743
R Shoulder 0.943 0.922 0.932 0.888 0.935 0.911 0.912 0.945 0.928
L Shoulder 0.948 0.927 0.937 0.882 0.930 0.905 0.917 0.928 0.922
L Elbow 0.696 0.681 0.688 0.691 0.673 0.682 0.751 0.695 0.722
L Wrist 0.436 0.426 0.431 0.258 0.356 0.299 0.799 0.283 0.418
Neck 0.976 0.955 0.965 0.898 0.959 0.927 0.921 0.955 0.938
Head 0.996 0.975 0.985 0.901 0.966 0.932 0.937 0.936 0.937
Average 0.765 0.748 0.757 0.687 0.733 0.709 0.799 0.749 0.773
Seat belt [IoU] n/a 21.7% 27.8%

MSCOCO dataset, for keypoint detection on our test set. We
report the precision, recall, and F1-score for each of the eight
keypoint to illustrate the variance in prediction difficulty for
some keypoints. Because the output of the keypoint detection
model is a confidence heatmap, we define a true positive
prediction when the center of a prediction region is within
some distance δ of the ground truth keypoint location. In
our experiments, we use δ = 20 pixels. A false positive is
when the center of a prediction region is greater than δ pixels
from the true keypoint location, and a false negative is when
no prediction center is within δ pixels of a ground truth
keypoint. For seat belt detection, we report the IoU between
the prediction region and the ground truth region.

Table III shows the prediction results. We highlight in bold
the best F1 score for each keypoint. When we compare our
lightweight model, we observe that adding flip augmentations
increases performance for most keypoints on the wrists,
elbows and shoulders (e.g., keypoints with R and L). For
example, the F1-scores for R Wrist and L Wrist increase by
over 0.1 after adding flip augmentation. The OpenPose model
is better than our lightweight model trained without flip
augmentation. However, we can achieve better performance
than the OpenPose model once the data augmentation is used.
Table III shows the average performance across all keypoints.
Our model trained with flip augmentations achieves the
highest overall F1 score for keypoint prediction. Notice that
OpenPose is a large model trained with a large MSCOCO
dataset. The implementation of OpenPose that we use [26]
has 21,979,692 parameters, which is over 11 times the
number of parameters in our model (1,947,993). Therefore,
it is remarkable that we can achieve competitive performance
when using the proposed lightweight model.

For all models, the performances for the R Wrist and L
Wrist keypoints are lower than the keypoints for Shoulder,
Neck, and Head. These results suggest that the wrists are
more difficult to detect regardless of what data each model
was trained on. The wrists can take on a variety of positions
within an image depending on the position of the subject’s
hands, whereas the shoulders, neck, and head are relatively
stationary with respect to the subject’s body and the vehicle

seat.
OpenPose does not predict seat belt locations. Therefore,

we compare the performance gains achieved by adding flip
annotations using our lightweight model. The seat belt IoU
increases by 6% (absolute) after adding the flip augmenta-
tion.

VI. CONCLUSIONS

We presented the MSP-DISK corpus, which is a diverse,
publicly available dataset for in-vehicle keypoint and seat
belt detection. This dataset contains naturalistic images from
multiple drivers and passengers in a wide range of vehicle
settings, providing a large variability between samples. It
includes annotations for the wrists, elbows, shoulders, neck,
and head of the driver and all passengers, as well as the
location of the seat belt for all subjects. We show that this
dataset is sufficiently large to train a model for the task of
keypoint detection and seat belt segmentation. The results
show similar keypoint detection results to the one obtained
with the OpenPose model, which is a large architecture with
over 11 times the number of parameters of our lightweight
model. The proposed model can simultaneously predict seat
belt locations, which makes this implementation an effective
DMS solution. We hope this dataset inspires further advances
in the field of intelligent driver monitoring systems for the
safety of drivers, passengers, and pedestrians.

Further research for collecting effective in-vehicle datasets
includes crowdsourcing efforts, where individuals can opt-in
to submit videos filmed within their vehicle. This research
direction can provide a large variety of subjects and vehicles
to improve the coverage of the database. By supplying par-
ticipants with deep cameras (e.g., time-of-flight solutions),
depth information can be included in the dataset. Training
on the depth modality can help improve performance in low-
light conditions [13].
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