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Introduction Modeling Approach with Functional Data Analysis (FDA)

= FDA represents the structure of signals as functions = We use fPCA to train neutral reference models

- Do we capture all the emotional cues with global statistics? = x(t) : signal y(t): sampled value ¢, (t): basis functions " Projections {f,, ..., f} are used as features
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= State-of-the-art: extract global statistics from acoustic features
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« Rising and falling FO movements within accents raese s senameier 2000 y; = x(t;) +¢€; x(t) Z Ck @k (t) or energy) contour f”l(t)
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= Pitch accents and boundary tones wiscome et 2003 1 prncipal
= Functional Principal Component Analysis (fPCA)

= ConcaVity and COnveXity of the FO contour [Yang & Campbell, 2001]
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= Intuition (EMO-DB):
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= Goal: modeling the shape of the energy and FO contours

Functional

PCA = Implementation: ¢, =6 order B-spline with K=40 and U=20
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= Emotional prominence using shape-based neutral models

Activation

Discriminant Analysis ' Results & Conclusions

= EMO-DB:
= fPCA projections increase performance up to 17.6%

* Quadratic discriminant classitier (QDC) = Sentences’ durations are linearly warped = FDA neutral models trained with WSJ1 " The fPCA classifiers are more consistent (lower std)

= SEMAINE

, _ o | | = Classifiers with fPCA projections are 6.9% better than benchmark
= We evaluate lexicon-independent models = Development, training, testing sets = Neutral and emotional classes based on - Performance is not affected by shorter segments (results on paper)

= Emotional classes grouped into 1 class averaged activation-valence scores = Global statistics do not capture all emotional cues

. . . . = Two-fold cross-validation (5 train, 5 test
= Benchmark classifiers (QDC) = Trained with under sampling (100 times) ( ) Future Directions:

Accuracyé Average ;AverageéF -score SEMAINE Accuracyé Average ;Average F-score
Precision Recall Precision Recall | = Evaluation of the approach with prosodic & spectral features

= Subset from IS challenge 2010 ischuieret A, 2010 3 (3. = Detect localized emotional information in dialogs

B EmOtionaI deteCtion (neUtraI VS emOtiOnaI) EMO-DB COrpus [Burkhardtetal.2005]: SEMAINE COerS [McKeown et al., 2010]

* SVM achieves similar performance = Speaker-independent cross-validation = Time based segmentation (1 sec)

= Neutral speech with different lexical content

= Trained with statistics from FO and energy

= Forward feature selection o References
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