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ABSTRACT
The performance of speech emotion classifiers greatly degrade

when the training conditions do not match the testing conditions.
This problem is observed in cross-corpora evaluations, even when
the corpora are similar. The lack of generalization is particularly
problematic when the emotion classifiers are used in real applica-
tions. This study addresses this problem by combining active learn-

ing (AL) and supervised domain adaptation (DA) using an elegant
approach for support vector machine (SVM). Active learning se-
lects samples in the new domain that are used to adapt the speech
classification models using domain adaptation. This paper demon-
strates that we can increase the performance of the speech recog-
nition system by incrementally adapting the models using carefully
selected samples available after active learning. We propose a novel
iterative fast converging incremental adaptation algorithm that only
uses correctly classified samples at each iteration. This conserva-
tive framework creates sequences of smooth changes in the decision
hyperplane, resulting in statistically significant improvements over
conventional schemes that adapt the models at once using all the
available data.

Index Terms— Emotion recognition, active learning, SVM
adaptation

1. INTRODUCTION
Recognizing emotions from speech is an important problem with
clear applications in many domains. In order for current speech emo-
tion classifiers to perform well, the data used for training and testing
the models should be similar, ideally coming from the same domain.
The performance degrades heavily when there is a mismatch [1],
so it is important to develop strategies that can mitigate the drop in
performance in the presence of a new domain. We formulate this
problem by having a source domain with emotional labels, which is
used to train the model, and a target domain with unlabeled data,
which is used to test the model. While the most obvious solution is
to annotate enough data in the target domain to achieve good per-
formance, generating labels for new data is both expensive and time
consuming [2]. It commonly requires multiple raters to evaluate the
data, whose annotations are later fused to generate gold standard la-
bels. It is important that the proposed method (1) requires limited
labeled data from the target domain, and (2) efficiently use these la-
beled data.

A popular approach for building a classifier that performs well
in a new domain is active learning (AL), where the task is to identify
the most informative samples in the target domain that can be used
to improve the classifier [3]. Since not all the samples are equally
beneficial to the classifier [4], different strategies are used to select
the most useful samples, which are later annotated by human raters.
The new samples are commonly added to the source domain to train
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the classifier. Another common approach is to adapt one or more
classifiers trained on domains that are different, but close to the new
domain [5]. Domain adaptation (DA) can be used with small set of
labeled data (supervised) or with labels automatically generated by
the classifiers (unsupervised). DA uses classifiers trained on source
domains, correcting the hyperplanes by leveraging data from the tar-
get domain. Combining AL and DA can be an appealing framework
to reduce the required annotations, reducing the mismatch between
train and test conditions.

This paper explores the use of active learning, along with su-
pervised domain adaptation for support vector machines (SVMs) in
speech emotion recognition. The key contribution of the paper is
the proposed data selection framework used to adapt the classifiers,
which efficiently uses the new labeled data to improve the perfor-
mance of the classifiers. We use AL to identify a limited set of sam-
ples from the target domain. Instead of using all the samples for
DA, we propose an iterative algorithm where we consider only the
samples where the predicted labels at a given step match the annota-
tions of the new labeled data. The process is repeated multiple times,
where we evaluate different stopping criteria. This is a conservative
approach to adapt the SVM classifier, avoiding large changes in the
hyperplane caused by including samples in the wrong side of the cur-
rent decision boundary. The promising results show the importance
of data selection in adapting classifiers to a new domain, providing
an ideal framework to reduce the amount of data and time needed to
generate a robust classifier.

2. RELATED WORK
The key challenge in speech emotion recognition is to build classi-
fiers that perform well under various conditions. The cross-corpora
evaluation in Shami and Verhelst [6] demonstrated the drop in classi-
fication performance observed when training on one emotional cor-
pus and testing on another. Several approaches have been proposed
to solve this problem.

Shami and Verhelst [6] proposed to include more variability in
the training data by merging emotional databases. They demon-
strated that it is possible to achieve classification performance com-
parable to within-corpus results. The main approach to attenuate the
mismatch between train and test conditions is to minimize the dif-
ferences between both domains. Hassan et al. [7] used kernel mean

matching (KMM), Kullback-Leibler importance estimation proce-

dure (KLEIP), and unconstrained least-squares importance fitting

(uLSIF) to increase the weight of the training data that matches the
test data distribution.

Studies have explored feature transformation to reduce mis-
matches between train and test conditions. Zhang et al. [8] showed
that by separately normalizing the features of each corpus, it is pos-
sible to minimize cross-corpus variability. Deng et al. [9] trained a
sparse autoencoder on the target data and used it to reconstruct the
source data. This approach used feature transformation in a way that
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exploits the underlying structure in emotional speech learned from
the target data. Deng et al. [10] used two denoising autoencoders.
The first autoencoder is trained on the target data and the second
autoencoder is trained on the source data, but it is constrained to be
close to the first autoencoder. The second autoencoder is then used
to reconstruct both source and target domain data.

Deng et al. [11] used autoencoders to find common feature rep-
resentation across the domains. They trained the autoencoder such
that it minimizes the reconstruction error on both domains. Mo-
tivated by the work of Deng et al. [11], Sagha et al. [12] used
principal component analysis (PCA) along with Kernel canonical

correlation analysis (KCCA) to find views with the highest corre-
lation between the source and target corpora. First, they used PCA
to represent the feature space of the source and target data. Then,
the features for source and target domains are projected using the
PCA in both domains. Finally, they used KCCA to select the top N
dimensions that maximize the correlation between the views.

Zhang et al. [11] proposed an enhanced versions of Self-Training
and Co-Training, where they kept track of the changes in the labels
assigned to sentences added to the training set. This approach al-
lowed them to detect and correct noise in the labels used for train-
ing. Zhang et al. [12] combined semi-supervised and uncertainty
based active learning. The proposed algorithm outperformed meth-
ods that separately used either active learning or semi-supervised
learning. They were able to maintain the classification performance
by using only 25% of the data. Also using active learning, Zhang et
al. [13,14] studied different querying criteria and showed that sparse
instance selection boosts performance and reduces the amount of
data annotation needed in the case of unbalanced classes.

The contribution of this paper is an appealing framework to com-
bine active learning (AL) and domain adaptation (DA). The closest
paper related to this work is the study by Zhang et al. [12]. The key
difference is the data selection used after annotating the data from
the target domain. This paper proposes an iterative domain adapta-
tion algorithm that considers the prediction of the classifiers on the
labeled data in the target domain. By adapting only with the samples
that are correctly recognized, we create a conservative adaptation
scheme that increases the performance of the system.

3. DATABASES
We evaluate our experiments in a cross corpus setting, with the USC-
IEMOCAP database [15] as our source domain (training) and the
MSP-IMPROV database [16] as our target domain (testing). Table 1
shows the turn distribution across the emotions for both databases.

3.1. USC-IEMOCAP corpus
The USC-IEMOCAP database is an audiovisual corpus recorded
from ten actors during dyadic interaction [15]. It has approximately
12 hours of recordings with detailed motion capture information
carefully synchronized with audio (this study only uses the audio).
The goal of the data collection was to elicit natural emotions within
a controlled setting. This goal was achieved with two elicitation
frameworks: emotional scripts, and improvisation of hypothetical
scenarios. These approaches allowed the actors to express spon-
taneous emotional behaviors driven by the context, as opposed to
read speech displaying prototypical emotions. Several dyadic inter-
actions were recorded and manually segmented into turns. Each turn
was emotionally annotated by three evaluators into categorical emo-
tions, where individual annotations are later merged using majority
vote rule. For this study, we combine samples labeled as excited and
happiness, creating a four class problem: anger, happiness, sadness
and neutral speech.

Table 1. Distribution of turns per class.
Databases # turns per class

A H S N
P

USC-IEMOCAP 1103 1636 1084 1708 5531
MSP-IMPROV 788 2624 886 3454 7752
[A - Anger; H - Happiness; S - Sadness; N - Neutrality]

3.2. MSP-IMPROV corpus
MSP-IMPROV is a multimodal emotional database recorded from
actors interacting in dyadic sessions [16]. The recording were care-
fully designed to promote natural emotional behaviors, while main-
taining control over lexical and emotional content. The corpus relied
on a novel elicitation scheme, where two actors improvise scenarios
that lead one of them to utter target sentences. For each of these tar-
get sentences, four emotional scenarios were created to contextualize
the sentence to elicit happy, angry, sad and neutral reactions, respec-
tively. The approach allows the actor to express emotions elicited by
the scenarios, avoiding prototypical reactions that are characteristic
of other acted emotional corpus. Busso et al. [16] shows that the tar-
get sentences occurring within these improvised dyadic interactions
were perceived more natural than read renditions of the same sen-
tences. The MSP-IMPROV corpus not only includes the target sen-
tences, but also other sentences during the improvisation and natural
interactions between actors during the breaks. The corpus consists of
8,438 turns (over 9 hours) of emotional sentences recorded from 12
actors. The turns are manually segmented into speaking turns, which
are emotionally annotated with perceptual evaluations using crowd-
sourcing [17]. The labels include four categorical emotions (anger,
happiness, sadness, or neutrality) as well as dimensional attributes
scores (arousal, valence, and dominance). The label assigned to each
turn is decided by the majority vote rule, where we only consider
turns that reach an agreement.

4. METHODOLOGY
The section presents the proposed algorithm that combines both AL
and DA to build a classifier that improves performance in new do-
mains. This work is motivated by Adapt-SVM [18, 19], however,
this can be applied to other model parameter adaptation algorithms.
We first describe the AL criteria used in this study (Sec. 4.1) and the
details of the DA approach (Sec. 4.2).

We define the following notation used in the paper: xi is a d-
dimensional feature vector, yi is the class label for feature vector i,
Ds = ([xs

1, y
s
1], . . . , [x

s
M , ys

M ]) denotes the labeled source domain
data, Dt = (xt

1, . . . ,x
t
Nu

) is the target domain data, which is as-
sumed to be unlabeled. L is the subset of sentences in the target
domain that we want to annotate. After collecting the annotations,
this set becomes Dt

l = ([xt
1, y

t
1], . . . , [x

t
Nl

, yt
Nl

]) (i.e., the target
domain data labeled by AL).

4.1. Active Learning (AL)
The task in AL is to identify sentences in the target domain that can
improve the classification performance when added to the training
set. The most common AL strategies are: uncertainty sampling, se-
lecting samples where the classifier is less confidence; committee

based query, selecting samples where multiple classifiers disagree;
estimated expected error, selecting samples that if added to the la-
beled set would minimize the expected error in the future; variance

reduction, selecting samples that maximize future variance reduc-
tion derived from the estimated distribution of the model’s outputs;
and, density weighted strategies, selecting samples according to the
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Algorithm 1 Adaptation using all the samples -Baseline
1: Train a classifier H using Ds, and then classify Dt

2: Rank the classified labels based on classification confidence
3: Select a subset L with the lowest confidence
4: Submit L to be annotated (i.e., AL step)
5: Remove L from testing data Dt

6: Adapt classifier H using subset Dt
l . eq. (2)

7: Evaluate the adapted classifier on the testing data Dt

underlying distribution, avoiding selecting outliers. This paper uses
uncertainty sampling querying criteria, since it works well for max-
margin algorithms such as SVM. The most informative samples for
SVM classifiers are the support vectors, which are the samples that
lie between the hyperplane and the margins. These samples are also
the ones the classifier has the least confidence in their labels, since
they are closer to the hyperplane.

4.2. Domain Adaptation (DA)
Adapt-SVM was proposed by Yang et al. [18]. It aims to learn a new
classifier decision function from the adaptation data. This is done by
learning a delta function �f :

f(x) = fs(x) +�f(x) = fs(x) +�w

T�(x) (1)

where fs(x) is the decision function learned from the training data
from source domain and w are the parameters to be estimated from
the labeled data in the new domain. The problem is formulated such
that the new decision function minimizes both the error on the adap-
tation data and the deviation from the old decision function. They
defined the objective function as:

min
w

1
2
k�wk+ C

NX

i=1

⇠i

s.t. ⇠i � 0,

yi(f
s(xi) +�w

T�(xi)) � 1� ⇠i 8(xi, yi) 2 Dt
l

(2)

where �(xi) is a kernel mapping function. The cost factor C con-
trols the contribution of the loss function on adaptation data.

4.3. Combining Active Learning and Domain Adaptation
Algorithm 1 describes the straightforward approach to combine AL
and DA. After training the SVM with the source domain, AL se-
lects samples according to the uncertainty sampling querying crite-
ria (samples close to the hyperplane). After the annotation process
of Dt

l , all the labeled data are used to adapt the hyperplane of the
SVM with Equation (2). This approach is used as our baseline to
compare our proposed approach.

4.3.1. Motivation of the Proposed Approach

The data used for adaptation (Dt
l ) have a significant role in the per-

formance of the adapted classifier. Samples from Dt
l in the wrong

side of the hyperplane (i.e., the classifier incorrectly predicts its la-
bel) can have an important influence on the decision boundary. As
the classifier adapt its decision boundary to correct these cases, the
influence of the original model trained with the source domain de-
creases, unlearning information that may be important. This is par-
ticularly relevant in emotion recognition problems, when the labels
are annotated by human subjects. The perception of emotions is
intrinsically listener-dependent. Therefore, the emotional labels de-
rived from perceptual evaluations are noisy with low inter-evaluator

agreement [1]. Even if the label is correctly annotated, the sam-
ple from Dt

l that disagrees with the classifier can greatly affect the
performance of the system as it will require a larger shift in the hy-
perplane compared to a sample that agrees with the classifier. Since
all the labels in Dt

l are close to the hyperplane, many of these sam-
ples will become support vectors. It is crucial that the adapted model
does not unlearn useful information from the original model while
trying to adapt the boundary to account for these samples. We hy-
pothesize that a conservative adaptation approach can prevent these
problems. We propose to consider whether the current model cor-
rectly or incorrectly classifies samples in Dt

l . We derive an elegant
iterative algorithm that at each step evaluates whether the current
model agrees with available labeled data, adapting the models with
only the samples in the correct side of the current hyperplane.

4.3.2. Proposed Algorithm

Algorithm 2 shows the proposed approach, where we incrementally
adapt only with samples from Dt

l that the classifier has correctly
predicted at a given iteration. Using the dataset selected by AL (Dt

l ),
we evaluate our current classifier. We identify the subset Na from
Dt

l where the labels are correctly predicted. We update the models
with Equation (2), using only samples in Na. This process continues
until meeting the stopping criterion, which is discussed in Section
4.3.3. It is important to emphasis that Algorithm 1 (baseline) and
Algorithm 2 (proposed approach) operate with the exact same data
selected by AL. Our proposed algorithm does not require to annotate
new samples during each iteration. The key difference between both
algorithms is that Algorithm 1 uses all of the available data in one
iteration, while Algorithm 2 uses a subset of Dt

l in each iteration.

4.3.3. Stopping Criteria

As described in the experimental evaluation, we implement this ap-
proach as a multi-class problem for four basic emotions: anger, hap-
piness, sadness, and neutrality. Based on the multi-class aspect of the
problem, various stopping criteria are considered for the incremental
adaptation algorithm. Criterion 1 stops the algorithm when the num-
ber of emotional classes represented in Na is less than three. Cri-

terion 2 stops the algorithm when the number of emotional classes
represented in Na is less than two. Criterion 3 adds an extra iteration
to Criterion 2, where we add all the remaining samples, including the
samples in Na that are incorrectly classified.

We implement this multi-class SVM problem with the “one-
against-all” method, where a binary SVM classifier is built for each
class. If at a certain iteration the correctly classified data only belong
to two classes, then only the classifiers related to those two classes
are adapted; the rest of the classifiers remain unchanged.

5. EXPERIMENTS AND RESULTS
5.1. Feature Selection
We used OpenSMILE framework to extract the acoustic fea-
tures [20]. We adopted the feature set released for the INTER-
SPEECH 2013 Computational Paralinguistic Challenge [21], con-
sisting of 6373 features including turn based statistics of prosodic,
spectral and voice quality features. We reduced the dimensional-
ity of the feature vector using a two step approach. First, we use
Correlation Feature Selection (CFS) to remove redundant features.
CFS adds features one at a time that correlate with the labels, but
that are not correlated with previously selected features. We reduce
the feature set to 3000, reducing the computational complexity of
the feature selection process. The second step uses forward feature

selection (FFS), where the cost function maximizes the performance
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Algorithm 2 Incremental Adaptation -Proposed Algorithm
1: Train a classifier H using Ds, and then classify Dt

2: Rank the classified labels based on classification confidence
3: Select a subset L with the lowest confidence
4: Submit L to be annotated (i.e., AL step)
5: Remove L from testing data Dt

6: Select subset Na from Dt
l that the classifier H predicted cor-

rectly
7: while Na contains at least two class labels do
8: Adapt classifier Hi using subset Na. eq. (2)
9: Remove Na from Dt

l

10: Select subset Na from Dt
l that the adapted classifier Hi+1

predicted correctly
11: Evaluate the adapted classifier on the testing data Dt

Table 2. Average F1-Score
Algorithm 1

criteria # samples before After # iterations
Algorithm 1 200 45.48 46.70 1

Algorithm 2
criteria # samples before After # iterations
1st step 64.4 45.48 47.78 1
criterion 1 117.8 45.48 48.28 3.71
criterion 2 123.6 45.48 48.13 4.71
criterion 3 200 45.48 45.47 5.71

of the SVMs over the source domain (i.e., train set). The dimension
of the feature set for each experiment is 300.

5.2. Experiment
We used LibSVM toolkit to train our SVM classifiers [22]. We im-
plement the multi-class classifier as four “one-against-all” classifiers
with a linear kernel and a cost factor C set to 1 (our previous work
showed good performance with this setting). We use random sub-
sampling to ensure balanced classes in both train and test conditions.
After sampling, the number of instances for training and testing are
4336 and 3152, respectively. We predict the labels for the testing
data (target domain) with SVM classifiers, selecting the least con-
fident samples to be annotated with AL. We choose 200 sentences,
which are removed from the testing set for fair comparison. We com-
pare Algorithm 1 (baseline) and Algorithm 2 (proposed approach).
We repeat the evaluation 20 times to ensure consistent results across
the random sub-sampling iterations, reporting the average F1-scores.
We assert performance at p-value = 0.05, using matched pair popu-
lation mean t-test.

5.3. Results
Table 2 shows the F1-score of the classifiers before and after adapta-
tion, along with the average number of samples used for adaptation.
The table includes the results for Algorithm 1, and different stopping
criterion for Algorithm 2. Algorithm 1 uses all 200 samples to adapt
the classifiers trained with the source domain. The adaptation im-
proves the classification performance in 1.23%, which is statistically
significant over the F1-score before adaptation (p-value < 2e�4).

Algorithm 2 incrementally adapts the classifiers with the sub-
set of samples correctly recognized by the SVMs. Table 2 gives the
results after the first iteration, and after each of the stoping crite-
ria. The increase of F1-score just by performing the first iteration
is 2.31%, where we only use 64.4 samples on average. The per-
formance increases as we add more iterations. The classification

0 1 2 3 4

Step

45

46

47

48

49

F
-1

 S
co

re

Algorithm 1 Algorithm 2

Fig. 1. Average performance of Algorithm 2 across iterations. The
F1-score of Algorithm 1 is significantly lower.

performance using criterion 1 is 48.28%, which represents an ab-
solute improvement of 2.80% over the F1-scores before adaptation,
which is statistically significant (p-value < 2e�11). This criterion
uses 3.71 iteration in average using 117.8 out of the 200 sentences in
Dt

l . The classification performance for criterion 2 is 48.13%, which
is 2.65% better than the F1-score before adaptation. This result is
also statistically significant over the result before adaptation (p-value
< 2e�10). The last row of Table 2 shows the performance for cri-
terion 3, where the goal is to show the degradation in performance
caused by adapting the classifiers with all the available data, includ-
ing the misclassified samples. In just one iteration, the classification
performance drops from 48.13% to 45.47%. This step requires the
classifiers to change the hyperplane to accommodate samples in the
wrong side of the hyperplane, affecting the decision boundary learnt
with the data from the source domain.

When we compare the performance between Algorithm 1 and
Algorithm 2, we observe that the proposed approach is significantly
better. With the stopping criterion 1, the F1-score is 1.58% better
than Algorithm 1 (p-value < 5e�5). With the stopping criterion
2, the F1-score is 1.42% better than Algorithm 1 (p-value < 1e�4).
The improvement in performance is achieved with an average of 3.71
iterations for criterion 1 or 4.71 iterations for criterion 2. The pro-
posed approach does not require high number of iterations.

Figure 1 gives the classification performance for Algorithm 2 per
iteration (solid blue line). For comparison, we plot the performance
for Algorithm1 (dashed red line). Both curves start with the perfor-
mance of the classifiers before adaptation. The figure shows the ad-
vantage of the proposed algorithm over the standard approach, where
even at the first iteration the difference in performance is significant,
even though the proposed approach approximately uses only a third
of the labeled data. Algorithm 2 converges after few iterations.

6. CONCLUSIONS
This paper proposed an algorithm for incremental supervised SVM
domain adaptation. We showed the importance of selecting the data
used for adaptation to match the classifiers’ predictions, where by
adapting with the correct data we can achieve a significant improve-
ment. The approach uses a portion of the labeled dataset, converg-
ing to a stable performance after few iterations (between 3 and 5).
The evaluation showed that adapting with misclassified data causes
a degradation in classification performance.

For future work, we want to modify the optimization function
so that we can make use of all of the available data. We can achieve
this goal by introducing a variable regularization parameter for each
instance. This framework will allow us to reduce the weight as-
signed to the misclassified samples, instead of ignoring them, as we
do in the proposed approach. We will also explore if the proposed
algorithm can be used in different supervised domain adaptation ap-
proaches (e.g. adapting deep learning frameworks).
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