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ABSTRACT

When emotion recognition systems are used in new domains, the
classification performance usually drops due to mismatches between
training and testing conditions. Annotations of new data in the new
domain is expensive and time demanding. Therefore, it is important
to design strategies that efficiently use limited amount of new data
to improve the robustness of the classification system. The use of
ensembles is an attractive solution, since they can be built to perform
well across different mismatches. The key challenge is to create
ensembles that are diverse. This paper proposes the use of active
learning along with feature selection to build a diverse ensemble that
performs well in the new domain. The diversity and accuracy of the
ensemble are achieved by (1) training emotional classifiers with bias
toward specific emotions, (2) eliminating overlap in the feature sets
of the ensemble, and (3) conducting feature selection by maximizing
the performance over the new labeled data. We study various data
selection criteria, and different sample sizes to determine the best
approach toward building a stable diverse ensemble that generalize
well on new domains.

Index Terms— Emotion recognition, ensemble, active learning,
machine learning.

1. INTRODUCTION
An important challenge in speech emotion recognition is to build a
robust classifier that performs well regardless of the application [1].
To account for the environmental, emotional and idiosyncratic vari-
abilities, the classifier would need enough labeled data which is ex-
pensive and not easy to collect. It is important to identify alternatives
in machine learning that effectively use limited labeled data from a
new domain to improve the classification performance. An appeal-
ing framework is the use of ensembles.

This paper explores the use of ensembles in emotion recogni-
tion, which effectively use limited data from a new domain. The
idea behind ensembles is to train multiple classifiers which are later
fused, improving the overall performance of the system. Ensembles
have multiple benefits [2, 3]. With abundant data, the classifiers can
be trained in parallel using partitions of the dataset. With limited
data, the ensemble can use bootstrapping algorithms [4, 5]. Another
benefit of ensembles is that they are more resilient to performance
degradation due to mismatched conditions. While some classifiers
in the ensemble may be affected, the diversity of the classifiers can
attenuate the drop in performance by using the ensemble in a differ-
ent domain. For these reasons, ensembles have been used in emotion
recognition from speech [6, 6–8] and even for multimodal emotion
recognition [9–12].

The challenge in building ensembles is to increase the diversity
between classifiers [2]. If all the classifiers in the ensemble are sim-
ilar, their fusion will not provide additional benefits. This paper pro-
poses a feature selection algorithm that maximizes the performance
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of an ensemble on the target domain and ensures the diversity of
its speech emotion classifiers. The algorithm makes use of active
learning (AL) to minimize the amount of labeled data needed for
feature selection. The diversity of the ensemble is achieved by (1)
training emotional classifiers with bias toward specific emotions, (2)
eliminating overlap in the feature sets of the ensemble, and (3) con-
ducting feature selection by maximizing the performance over the
labeled data from the target domain. We study how the size and
criteria of selecting samples used in feature selection affect the en-
semble performance. The proposed approach improves performance
by increasing the robustness of the ensemble.

2. RELATION TO PRIOR WORK
Previous studies have shown the advantages of using ensembles in
emotion recognition. Lee and Narayanan [13] used an ensemble of
three classifiers to detect negative emotion in spoken dialog, where
each classifier was separately trained with acoustic, lexical and dis-
course features, respectively. They showed that the fusion of the
classifiers’ decisions outperform that of a single classifier. They also
showed the importance of the ensemble diversity, where improve-
ments can only be achieved with complementary classifiers.

There are various approaches to build an ensemble that would
perform well in a new domain. Schuller et al. [14] showed that it
was possible to outperform the performance of a classifier trained
on a single database, by adding different databases during training
either by pooling them into a single training set or by training mul-
tiple classifiers which are then fused. Adding databases adds diver-
sity in the training data in terms of language, recording settings, and
noise, which helps building more robust classifiers. Duan et al. [15]
proposed to combine classifiers trained on different databases by
weighting them based on the distance in the distribution between
training and testing datasets. The algorithm uses the fusion of the
classifiers to optimize a new support vector machine (SVM) classi-
fier over a small amount of labeled data from the test domain, regu-
larized by the unlabeled data.

Dai et al. [16] proposed a modified version of Adaboost, where
they divided the training data into two partitions: one that agrees
with the test data distribution, and another that follows a different
distribution. They limited the error caused by training and testing
mismatches by increasing the weight on misclassified instances from
the similar distribution and by reducing the weight on instances from
the dissimilar distribution. Xia et al. [17] used a similar approach
for sentiment classification, where they used PCA to select samples
from the source domain that follow the same distribution of the tar-
get domain. After training an ensemble of classifiers with different
feature sets, they fused them using weights learned from their per-
formance on a small labeled set from the target domain. Instead of
having global weights for the ensemble classifiers, Gao et al. [18]
proposed a locally weighted ensemble framework. The proposed
framework mitigates the uncertainty caused by different models as-
signing different labels to test instances.

The contribution of this paper is on the feature selection step in
training the classifiers in the ensemble. The novel algorithm min-
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Table 1: Distribution of turns per emotional class (A: Anger;
H: Happiness; S: Sadness; N: Neutrality).

Databases # turns per class
P

A H S N
USC-IEMOCAP 1103 1636 1084 1708 5531
MSP-IMPROV 788 2624 886 3454 7752

imizes the mismatches between source and target domains, maxi-
mizes performance in the target domain using limited labeled data,
and increases the diversity in the classifiers.

3. DATABASES AND ACOUSTIC FEATURES
We evaluate our experiments in a cross corpus evaluation, where we
use the USC-IEMOCAP corpus as our source domain (i.e., training)
and the MSP-IMPROV databases as our target domain (i.e., testing).
Table 1 shows the speaker turns across emotions for both databases.
The USC-IEMOCAP database has about 12 hours of audiovisual
data recorded from ten actors [19]. The recordings were collected
with scripts, and improvisation of hypothetical scenarios, which
allowed the actors to express spontaneous emotional behaviors
driven by the context. Several dyadic interactions were recorded
and manually segmented into turns. Each turn was annotated into
ten categorical emotions (e.g., anger, happiness, or neutrality – three
evaluators per turn), as well as dimensional scores (valence, acti-
vation, dominance – two evaluators per turn). This study focus on
categorical emotions. We consider only four emotional categories:
anger, happiness, sadness and neutrality. The happy set also includes
speaking turns labeled as excited.
The MSP-IMPROV corpus is a multimodal emotional database de-
signed to promote natural emotional behaviors while maintaining
control over lexical and emotional content in the recordings [20].
The corpus relied on a novel elicitation scheme, where two actors
improvise scenarios that lead one of them to utter target sentences.
For each target sentence, emotion-dependent scenarios are created so
that the renditions convey the target emotions expressed as dictated
by the context. The corpus also includes the rest of the speaking
turns during the improvisation and the natural interaction between
actors during the breaks. The corpus consists of 8,438 turns of emo-
tional sentences recorded from 12 actors (over 9 hours). The turns
are manually segmented into speaking turns and emotionally anno-
tated into categorical emotions (anger, happiness, sadness, neutral-
ity and other). The annotation was conducted with crowdsourcing,
where we estimate in real time the performance of the raters, stop-
ping the evaluation when their performance dropped below an ac-
ceptable level [21]. Each speaking turn was evaluated by at least five
raters, where we assign consensus using majority vote rule.

The study uses the feature set proposed for the Interspeech
2013 Computational Paralinguistics Challenge [22], extracted with
OpenSMILE [23]. This feature set includes statistics of prosodic,
spectral and voice quality features, resulting in 6,373 features.
Some of the features are highly correlated, therefore, we reduce the
set with correlation feature selection (CFS). CFS selects features
that correlate with the class label, but that are not correlated with
previously selected features. The set of features consider for the
evaluation consists of the first 3000 features selected by CFS using
the USC-IEMOCAP corpus (source domain).

4. PROPOSED ALGORITHM
Discriminative features vary from one domain to another. Ideally we
want to select discriminative features that are insensitive to changes
between domains. However, this is rarely possible. An alternative
is to use active learning (AL) to annotate a limited subset from the
target domain. After annotating new data in the target domain, it is
important to implement algorithms that efficiently use this set. The

straightforward approach to leverage limited data from the target do-
main is to include them in the training set by either retraining or
adapting the models. However, the features used for the ensemble
are not modified, relying only on information from the source do-
main. We hypothesize that the information from the target domain
may be effective to identify better discriminative features for the new
domain. We propose a feature selection algorithm that optimizes
the ensemble’s performance over the selected data with AL, while
making sure the ensemble is diverse. We increase the diversity by
introducing different class specific bias across the classifiers and by
reducing the overlap between feature sets across the classifiers in the
ensemble.

4.1. Dataset Selection for Active Learning

Active learning identifies samples in the target domain, which are
then labeled. This section defines various criteria used to select the
samples (denoted Dt). This dataset will be used in our proposed
feature selection scheme to train the ensemble.

Vote Entropy (VE) selects samples in the target domain with the
highest levels of disagreement among different classifiers. Assum-
ing that we have k classifiers, vote entropy is defined as [24]:

D(x) = �
X

c

V (c, x)

k
log

V (c, x)

k
(1)

where c ranges over all possible labels and V (c, x) is the number of
ensemble members assigning a class c to the input sample x. The
aim of vote entropy is to resolve confusion between different clas-
sifiers. We implement this method with an ensemble with 40 linear
Support Vector Machine (SVM) trained on the source domain. To
increase diversity, each classifier in the ensemble is trained with 40
unique features that are not used by any other classifier. We use an
adapted version of forward feature selection (FFS), where one fea-
ture is sequentially added to each classifier in order. After the feature
is added, it is removed from the set of feature available to the rest of
the classifiers. The ensemble is used to evaluate the sentences from
the target domain, selecting samples according to Equation 1.
Uncertainty sampling (US) identifies samples that a classifier is less
confident. We implement this framework with a single linear SVM
trained on the source domain. We reduce the feature set from 3000 to
300 using FFS. The SVM is then evaluated on the sentences from the
target domain, selecting sentences that are closest to the hyperplane.
Random sampling (RS) randomly selects samples from the target do-
main until reaching the required number of samples.

4.2. Proposed Feature Selection for Ensemble
The goal of the proposed feature selection algorithm is to minimize
the mismatch between train and test conditions, while preserving the
diversity of the ensemble. Algorithm 1 presents the pseudo code for
the feature selection, which has three main aspects.

First, the classifiers are biased toward specific emotions. This
approach selects features that are discriminative of specific emo-
tional classes, covering different parts of the feature space. This
leads the ensemble to be more diverse. If we have L classes, it par-
titions the k classifiers in the ensemble into L groups. The mth

classifier is biased towards the m mod L class. We bias each group
toward a specific class by maximizing the F2-score for that class.
The F�-score is defined as:

F� = (1 + �2
)

precision ⇤ recall
�2 ⇤ precision+ recall

(2)

Second, it eliminates the overlap in the feature sets of the ensem-
ble by modifying the FFS algorithm. Each classifier starts with an
empty feature set, adding at each stage the feature that maximizes its
performance. The difference here is that the feature selection of all
classifiers are done together in order. We sequentially add feature to
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Algorithm 1 Proposed Feature Selection

Input:
k : Number of classifiers in the ensemble
Nfs : Number of features per classifier
L : Number of classes
Ds : Source training data
Dt : Target labeled data
Fav : Set containing the features in the available feature space

Output: Fsel: Set containing the features selected for the ensemble
1: define: Hj is classifier j, f j

sel features selected for Hj

2: define: j = 1, i = 1,l = 1 and Fsel = �
3: for i <= Nfs do
4: for j <= k do
5: for l <= |Fav| do
6: fe = Fav(l)

7: Train Hj Using Ds and f j
sel [ fe

8: Evaluate Hj on Dt and f j
sel [ fe

9: m = j mod L
10: fs:= feature that maximizes Hj’s F2-score over class m
11: f j

sel = f j
sel [ fs

12: Fav = Fav � fs
Fsel = f1

sel, . . . , f
Ncl
sel

each classifier, moving to the second feature once all the classifiers
have one feature. After adding a feature to a classifier, this feature
is not longer available for the remaining classifiers. This process re-
peats until reaching the desired number of features. This approach
maximizes performance of each classifier, avoiding overlap in the
feature set, and increasing the diversity across classifiers.

Third, we conduct the feature selection by maximizing the per-
formance over the new labeled data from the target domain. The
classifiers are trained with the source domain, but they are evaluated
in the target domain using Dt. This is a novel way to leverage Dt,
minimizing the mismatch between source and target domains.

5. EXPERIMENTAL SETTINGS
We evaluate the approach using an ensemble with 40 SVM classifiers
for a four class problem (happiness, anger, sadness and neutrality).
We use the LibLinear toolkit [25] to train all the SVM classifiers.
For simplicity, we use linear kernel with the cost factor C set to 1.
To ensure balanced classes in both train and test sets, we used ran-
dom sub-sampling. After sub-sampling, the number of instances for
training and testing are 4336 and 3152, respectively. The evaluation
is repeated 10 times to ensure consistent results across the random
sub-sampling iterations. For each iteration, we (1) select samples
from the target domain for annotation using all the data selection
techniques presented in Section 4.1, (2) run the proposed feature
selection algorithm on the selected samples, (3) train the ensemble
on source domain data with the selected features, and (4) evaluate
the performance on the target domain, excluding the selected sam-
ples (i.e., Dt). For each sample in the test domain, every classifier
outputs the probability of that sample belonging to each of the four
classes. During the fusion of the ensemble predictions, we calcu-
late the probabilities of the classes by equally weighting the classi-
fiers in each class-dependent group, dividing by the sum across all
the groups. The reported results are the average of the performance
across all sub-sampling iterations.

The baseline for the evaluation is an ensemble containing 40
linear SVM classifiers, where each of them is trained on the source
domain with 40 features. The key differences are (1) we do not bias
the classifiers to emotional classes, and (2) we do not optimize per-
formance over the target domain (we do not use AL for the baseline).

However, we do limit the overlap between the feature sets across the
classifiers to increase the diversity of the ensemble.

We study the effect of the data used for feature selection. First,
we consider the size of the set, where we consider three sample sizes
200, 400, and 600. Notice that we report the performance on the
remaining data in the target domain, so the testing set across evalua-
tions are not necessary the same. Second, we consider the selection
criteria used in sampling the data: vote entropy, uncertainty sam-
pling, and random sampling. We evaluate statistical significance be-
tween classification results using one tail matched pair population
mean t-test, asserting significance at p-value= 0.05.

6. RESULTS
6.1. Proposed Feature Selection Method versus Baseline
Figure 1(a) shows average F1 score of ensembles trained using the
proposed feature selection algorithm for different selection criteria,
and different size for Dt. The first three bars give the results for un-
certainty sampling (set 1) when the size for Dt is 200, 400 and 600,
respectively. The next three bars give the results for vote entropy
(set 2), and the last three bars give the results for random sampling
(set 3). The arrows indicate whether the performance increases or
decreases with respect to the baseline performance (blue bars). For
example, we observe the largest improvement (about 3.7% absolute)
in Figure 1(a) for random sampling with 600 samples. We represent
statistical significant improvements of the proposed feature selection
algorithm over the baseline with an asterisk (*) above the bar. Since
samples in Dt are removed from the testing set, we cannot compare
the results across sample selection criteria, since they are evaluated
over different sets. We address pairwise comparison between meth-
ods in Section 6.2.

Figure 1(a) shows that the proposed feature selection approach
gives statistical significant improvements over the baseline in all
cases, except for uncertainty sampling when the selected samples
from the target domain is just 200. As we increase the sample size,
our feature selection approach with uncertainty sampling signifi-
cantly outperforms the baseline improving the performance in 2%
(absolute) with 600 samples. Both uncertainty sampling and vote
entropy criteria select samples that are harder to classify. Since these
samples are removed from the test set, the evaluation become easier.
As a result, the performance for the baseline performance increases.
This is why the performance of the baseline changes depending on
the sample selection criteria, especially when the number of selected
samples increase. For random sampling, removing these samples
does not make the problem easier so the baseline F1-score remains
somewhat constant for different test sets.

For vote entropy, Figure 1(a) significantly outperforms the base-
line, regardless of the sample size. The performance gap between
the proposed feature selection approach and the baseline decreases
as the selected sample size increases. While the baseline perfor-
mance increases from 45.4% (200 samples) to 46.8% (600 samples),
the performance of the proposed method remains relatively constant
around 47.4%. For random sampling, Figure 1(a) shows that the per-
formance gap increases from 1.0% for 200 samples, to 3.7% for 600
samples.

Similar to Figure 1(a), Figure 1(b) gives the performance when
the selected samples for AL are not only used for the proposed fea-
ture selection method, but also included in the training set. This is
a variation of the proposed framework. Since the baseline classifiers
are trained with the selected samples from the target domain, their
performance increases from the one shown in Figure 1(a). For this
case, the improvement in performance is statistically significant over
the baseline in four out of nine cases. Interesting, the trends are very
similar to the ones observed in Figure 1(a). With uncertainty sam-
pling, our ensemble performs worse than the baseline for small sam-
ple size (not statistically significant), but outperforms it for larger
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(a) Using Dt only for features selection.
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(b) Using features selection and adding Dt during training.

Fig. 1: The performance of the ensemble trained with the proposed
feature selection scheme using different data selection criteria. We
evaluate different size for Dt.

sample size (e.g., 600 samples). With vote entropy, our ensemble
only provides statistically significant performance over the baseline
when fewer samples are selected (200 samples). For random sam-
pling, the gap in performance increases as we select more samples.

6.2. Pairwise Comparison Between Data Selection Criteria
As mentioned, we cannot directly compare the results in Figure 1
across sample selection criteria, since the testing sets are different.
We create pairwise comparisons by defining sets where we use the
domain data, excluding the samples selected by two criteria:
• Set A: Target domain minus {uncertainty sampling, vote entropy}
• Set B: Target domain minus {uncertainty & random sampling}
• Set C: Target domain minus {vote entropy, random sampling}

Figure 2(a) shows the direct comparison between sample selec-
tion criteria when we used the set Dt only for feature selection.
The figure gives the results for different number of selected samples.
Each set of results has three bars, one for the baseline (blue bar), and
two for the proposed approach implemented with the corresponding
criteria. We denote with an asterisk (*) when the proposed approach
is statistically better than the baseline, and with a hat (^) if one en-
semble with one criterion is statistically better than the ensemble
with the other criterion.

For Set A, Figure 2(a) shows that vote entropy (47.8%) outper-
forms the baseline (45.6%) and uncertainty sampling 44.7% when
we only select 200 samples. As the sample size increases, the per-
formance of the ensemble with uncertainty sampling (49.2% - 600
samples) provides similar performance than the one for vote en-
tropy (49.0% - 600 samples). Both of them have F1-scores sig-
nificantly better than the baseline (47.9%). For Set B, Figure 2(a)
shows that random sampling consistently outperforms both uncer-
tainty sampling and the baseline across all settings. Ensembles with
uncertainty sampling outperforms the baseline when the number of
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(b) Using features selection and adding Dt during training.

Fig. 2: Direct comparison between data selection criteria for differ-
ent sizes for Dt. Two criteria are directly compared with the baseline
ensemble.

samples is either 400 or 600. When we compare vote entropy and
random sampling (i.e., Set C), Figure 2(a) shows that ensemble with
vote entropy (47.5%) achieves the best performance with 200 sam-
ples, but ensemble with random sampling has the best performance
with 600 samples. These results agree with the observations from
Figure 1.

Finally, Figure 2(b) gives the results when we also include Dt in
the training set. As expected, the baseline results increase when we
use data from the target domain. The best sample selection criteria
are vote entropy, when the number of samples is small and random
sampling when the sample size increases. These results demonstrate
the potential of the proposed feature selection approach, which pro-
vides statistical significant improvement over the baseline even when
Dt is included in the training set.

7. CONCLUSIONS
This paper proposed a feature selection algorithm using active learn-
ing for an ensemble, which minimizes the mismatches between train
and test conditions, and creates diverse classifiers in the ensemble.
The results demonstrated that we can achieve a significant improve-
ment by performing feature selection on a small set from the target
domain. We also demonstrated the importance of using the appropri-
ate criterion in selecting samples for annotation, where vote entropy
is preferable if the selected sample size is small. When the sample
size increases random sampling becomes the best option because it
better represents the distribution of the target domain.

We implement the algorithm with an ensemble with SVMs. It
is interesting to explore whether the benefits observed in the experi-
mental evaluation generalize for other classifiers such as random for-
est. We are also planning to evaluate other feature selection criteria
for AL that consider the data distribution along with the uncertainty
(e.g., expected error variance, density weighted strategy).
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