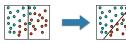


SUPERVISED DOMAIN ADAPTATION FOR EMOTION RECOGNITION FROM SPEECH

Mohammed Abdelwahab and Carlos Busso

Multimodal Signal Processing (MSP) Laboratory, University of Texas at Dallas


IEMOCAP (training)

Motivation

Performance of speech emotion recognition degrades with mismatched conditions

Model adaptation can mitigate problems

We address the following questions:

- How much labeled data is needed?
- How important is speaker diversity?

Classification Problem

Activation

Feature Selection

features

descriptors

corpora, using z-normalization.

INTERSPEECH 2011 feature set

Correlation Attribute Evaluation

Correlation Feature Selection

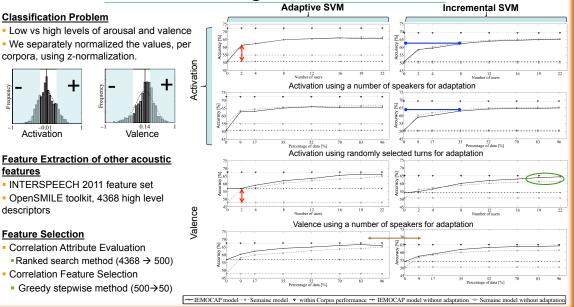
- Can acted data be used to train models?
- What is best approach for supervised adaptation?

0.14

SEMAINE (training)

- 10 speakers, dyadic recordings Emotion induction with SAL
- 2315 turns, 6-8 evaluators
- Continuous time evaluations Activation (calm vs. active)
- Valence (negative vs. positive) Average across time, raters

 Activation and valence **RECOLA** (testing)


6829 turns, 2 raters per turn

10 trained actors in 5 dyadic sessions

Spontaneous improvisations & scripted plays

- 23 speakers in dyadic sessions
- Continuous time evaluations
- Activation and valence

Emotion Recognition Evaluation

Adaptation Schemes

SVM training

- $\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{n} \xi_i$ s.t. $\xi_i > 0, \ y_i \mathbf{w}^T \phi(\mathbf{x}_i) > 1 - \xi_i, \forall (\mathbf{x}_i, y_i)$

Adaptive SVM [Yang et al., 2007]

- Minimizes:
- Classification error over the training examples
- Discrepancy between originals and adapted classifiers
- Decision boundary does not deviates much from original one
- It manages to separate new labeled data from target domain

 $f(x) = f^{old}(x) + \Delta f(x) = f^{old}(x) + \mathbf{w}^T \phi(\mathbf{x}_i)$

Incremental SVM [Shalev et al., 2011]

- It allows to incrementally add more training data
- Only a subset of the data is considered at each step
- It discards old data while maintaining the support vectors We use an effective stochastic sub-gradient descent algorithm for solving the optimization problem Training examples are selected at random
 - $\mathbf{w}_{t+1} \leftarrow (1 \frac{1}{t})\mathbf{w}_t + \eta_t \mathbb{1}[y_{i_t} \langle \mathbf{w}_t, \mathbf{x}_{i_t} \rangle < 1]y_{i_t} \mathbf{x}_{i_t}$

Discussion

Conclusions

- We notice significant improvements even when we only use data from two subjects for adaptation (~9% of the data)
- Speaker variety is not a dominant factor in selecting the adaptation set
- A classifier built with acted data can perform as well as a classifier built with natural emotional databases
- Both SVM adaptation methods provide similar performance

Future Directions

- Unsupervised domain adaptation
- Feature Normalization

Acknowledgment

This work was funded by NSF (IIS-1217104 and IIS-1329659)

 Average across time, raters We consider 899 turns, 6 raters per turn