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A number of speech enhancement algorithms based onMMSE spectrum estimators have

been proposed over the years. Although some of these algorithms were developed based

on Laplacian and Gamma distributions, no optimal spectral magnitude estimators were

derived. This dissertation focuses on optimal estimators of the magnitude spectrum for

speech enhancement. We present an analytical solution for estimating in the MMSE

sense the magnitude spectrum when the clean speech DFT coefficients are modeled

by a Laplacian distribution and the noise DFT coefficients are modeled by a Gaussian

distribution. Furthermore, we derive the MMSE estimator under speech presence un-

certainty and a Laplacian statistical model. Results indicated that the Laplacian-based

MMSE estimator yielded less residual noise in the enhanced speech than the traditional
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Gaussian-based MMSE estimator. Overall, the present study demonstrates that the as-

sumed distribution of the DFT coefficients can have a significant effect on the quality

of the enhanced speech.
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CHAPTER 1

INTRODUCTION

In general, there exists a need for digital voice communications, human-machine inter-

faces, and automatic speech recognition systems to perform reliably in noisy environ-

ments. For example, in hands-free operation of cellular phones in vehicles, the speech

signal to be transmitted may be contaminated by reverberation and background noise.

In many cases, these systems work well in nearly noise-free conditions, but their perfor-

mance deteriorates rapidly in noisy conditions. Therefore, development of preprocessing

algorithms for speech enhancement is always of interest. The goal of speech enhance-

ment varies according to specific applications, such as to boost the overall speech qual-

ity, to increase intelligibility, and to improve the performance of voice communication

devices [2]. Recent research also shows promising applications to cochlear implants [3].

Most single-channel speech enhancement algorithms rely on frequency domain

weighting [4] [1] [5] [6] [7], commonly consisting of a noise spectral density estimator [8]

[9] [10] and a spectral amplitude estimator [1] [11] [12]. However, the non-stationary

nature of speech signals and limitation on algorithmic delay and complexity require that

the noisy signal must be processed in short frames. Based on that requirement, some

speech estimators apply a statistical estimation rule based on a statistical model of the

Discrete Fourier Transform (DFT) coefficients. The well-known examples are Minimum

1
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Mean Square Error (MMSE) algorithms [1] [13] [14] and Wiener filtering [15] [2] [16],

which estimate the complex speech DFT coefficients based on Minimum Mean Square

Error (MMSE).

1.1 Problem statement

A number of frequency domain speech enhancement algorithms were proposed in [4]

[17] [18] [8] [19] [20]. This dissertation focuses on Short-Time Spectral Amplitude

(STSA) estimators using the MMSE criterion, which have received a lot of attention

in the past two decades [1] [13] [21] [22]. In the previous work, Ephraim and Malah

[1] optimally estimated, under an assumed Gaussian statistical model, the STSA and

complex exponential of the phase of the speech signal. They used this approach to

optimally estimate the short-time spectral amplitude (STSA), rather than the real

and imaginary components of the Short-Time Fourier Transform (STFT) separately,

since the STSA of a speech signal rather than its waveform is of major importance

in speech perception. It has been shown that the STSA and the complex exponential

cannot be estimated simultaneously in an optimal way. Therefore, an optimal MMSE

STSA estimator was employed and combined with the phase obtained from the noisy

spectrum.

The assumed Gaussian statistical model provides a good approximation for the

noise DFT coefficients [23]. For speech signals, however, whose typical DFT frame

sizes used in mobile communications are short (10ms -40ms) that assumption is not

well fulfilled. It is valid only if the DFT frame size is much longer than the span of
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correlation of the signal under consideration [24]. It has been shown that the real

and imaginary part of the speech coefficients are better modeled with Laplacian and

Gamma densities [25] [12] [26]. The observation led researchers to derive a similar

optimal MMSE STSA estimator but based on more accurate models, Laplacian and/or

Gamma. The derivation of such an estimator is complicated leading some people to

seek alternative techniques to compute the MMSE STSA estimator.

1.2 Proposed Work

In this work, an analytical solution of the optimal MMSE estimator obtained from

a direct derivation of STSA is presented based on Laplacian modeling and a mild

approximation. In order to further improve the performance of the estimator, we also

derive a Speech Presence Uncertainty (SPU) estimator and incorporate it into the

amplitude estimator. In detail, we target the following problems:

1. We derive the joint probability density function (pdf) of the magnitude and phase

of the DFT coefficients, and use that to derive the MMSE estimator of the speech

magnitude spectrum based on a Laplacian model for the speech DFT coefficients

and a Gaussian model for the noise DFT coefficients. After making some assump-

tions (and approximations) about the relationship between the magnitude and

phase pdfs (probability density functions), we derive a Laplacian-based MMSE

estimator in closed form.

2. In order to view how the assumption about the relationship between the mag-

nitude and phase pdfs affects the estimator, we also derive its expression (no
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solution obtained) without any assumptions, and compare the performance of

this estimator to the performance of the approximate estimator.

3. Speech Presence Uncertainty (SPU) estimator is another contribution to the

proposed estimator. Unlike Voice Activity Detection (VAD), it addresses the

speech/silence detection problem in terms of probability, and is derived using the

Bayes’ rule. After the magnitude is estimated by the method proposed above,

the SPU estimator refines the estimate of the magnitudes by scaling them by the

SPU probability.

This thesis is organized as follows. Chapter 2 gives a comprehensive review

for the state-of-the-art MMSE methods in speech enhancement. The proposed MMSE

methods with/without assumptions are presented and compared, and related numerical

stability are discussed in Chapter 3. In Chapter 4, the Speech Presence Uncertainty

(SPU) estimator is described. Chapter 5 presents the results of the proposed work and

comparison with other methods. Numerical stability and implementation issues are

further discussed and compared in this chapter. Chapter 6 gives a summary of our

contributions.



CHAPTER 2

LITERATURE REVIEW

In this chapter, we present the literature on MMSE estimators used for speech enhance-

ment.

2.1 Overview of the MMSE approach

In frequency-domain speech enhancement, the magnitude spectrum of the speech signal

is estimated and combined with the short-time phase of the degraded speech to produce

the enhanced signal. The spectral subtraction algorithms [27] [28] [3] and Wiener

filtering [15] [2] [16] are well-known examples. In the spectral subtraction algorithms,

the STSA of noisy and noise signals are estimated as the square root of maximum

likelihood estimation of each signal spectral variance [16], and then subtracted from

the magnitude spectrum of the noisy signal. In the Wiener filtering algorithm, the

estimator is obtained by finding the optimal MMSE estimates of the complex Fourier

transform coefficients. Both spectrum subtraction and Wiener filtering algorithms are

derived under Gaussian assumption for each spectral component.

Spectrum subtraction and Wiener filtering are not optimal spectral amplitude

estimators under the assumed Gaussian model. As stated in Chapter 1, the spectral

amplitude estimators are more advantageous than spectral estimators from a perceptual

5
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point of view. Ephraim and Malah [1] [13] formulated an optimal spectral amplitude es-

timator, which, specifically, estimates the modulus (magnitude) of each complex Fourier

coefficient of the speech signal in a given analysis frame from the noisy speech in that

frame.

In order to derive the MMSE STSA estimator, the a priori probability distribu-

tion of the speech and noise Fourier expansion coefficients should be assumed since these

are unknown in reality. Ephraim-Malah [1] derived their spectral amplitude estimator

based on a Gaussian model. They argued that this assumption utilizes asymptotic

statistical properties of the Fourier coefficients. Specifically, according to [29] [30], they

assumed that the Fourier expansion coefficients of each process can be modeled as sta-

tistically independent Gaussian random variables, real- and imaginary parts of each

component is independent to each other, and the mean of each coefficient is assumed

to be zero and the variance time-varying. The assumption is motivated by the cen-

tral limit theorem [31]. Central limit theorem/asymptotic statistical properties hold

more strongly when the analysis frame size is long, which somewhat conflicts with the

"short-time" requirement.

Porter and Boll [25], Brehm and Stammler [32], and Martin [12] recognized that

the DFT coefficients of clean speech derived from speech frames having a length of

about the span of correlation within the signal are not normally distributed, and might

be better modeled by a Gamma or a Laplacian distribution when the DFT frame

length is in the range of 10-40 ms [25] [12] [26], which is a typical frame size in speech

applications. He provided histograms of DFT coefficients using his own experimental
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Figure 2.1. (Dotted) Gaussian, (dashed) Laplacian, and (solid) Gamma densities fitted
to a histogram (shaded) of the real part of clean speech DFT coefficients (L = 256
fs = 8000Hz)

data to support the argument. Figures 2.1 and 2.2 from [33] show the histograms.

Figures 2.1 and 2.2 plot the histograms of the real part of the DFT coefficients

(frame size L = 256, sampling frequency = 8000 Hz) of clean speech averaged over three

male and three female speakers and six minutes of speech. At a global SNR of more than

40 dB, only a very low, almost stationary, level of quantization and ambient recording

noise is present in these signals. Since speech signals are highly non-stationary, it must

be ensured that the spectral coefficients represented in the histogram are obtained under

quasi-stationary conditions. Martin [33] tried to guarantee the stationarity as follows.

The a priori SNR can be used to select DFT coefficients with a consistent quasi-

stationary SNR, or, in the case of stationary background noise, with a fixed power.

That is, power is used as a criterion for stationarity. So for the depicted histograms,
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Figure 2.2. (Dotted) Gaussian, (dashed) Laplacian, and (solid) Gamma densities fitted
to a histogram (shaded) of the real part of clean speech DFT coefficients (L = 256
fs = 8000Hz)

only those DFT coefficients are selected which have an estimated a priori SNR larger

than 28 dB and smaller than 30 dB. Martin [33] also extended his investigation on

model assumptions to car noise. His results showed that this kind of noise does not

necessarily follow a Gaussian distribution as shown in Figures 2.3 and 2.4.

Figures 2.3 and 2.4 from [33] plot the histogram and the corresponding Gaussian

and Laplacian model densities for highly-correlated car noise (Diesel engine) recorded

at a constant speed of 90 km/h and evaluated with a DFT length of L = 256 and

sampling frequency of 8000Hz. It was found that the Laplacian density provided a

reasonable fit to the experimental data. Breithaupt and Martin [26] further verified

that the Gamma pdf produced a better fit to experimental data than the Gaussian pdf

using the Kullback divergence measure [34].



9

Figure 2.3. (Dotted) Gaussian and (dashed) Laplacian densities fitted to a histogram
(shaded) of the real part of car noise DFT coefficients (L = 256 fs = 8000Hz)

Figure 2.4. (Dotted) Gaussian and (dashed) Laplacian densities fitted to a histogram
(shaded) of the real part of car noise DFT coefficients (L = 256 fx = 8000Hz)
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Breithaupt andMartin [26] proposedMMSE Squared Spectral Magnitude (SSM)

Estimators based on Gamma and Laplacian models. In their approach, they aimed to

compute the squared magnitude of the clean speech spectral coefficients by estimating

the squared real and imaginary parts of the DFT respectively. In their method, the

clean speech signal and noise were modeled by a combination of Gaussian, Gamma and

Laplacian distributions, which will be detailed later.

It is known that signal enhanced by the MMSE estimator of the power spectral

density [26] suffers from musical noise. Martin [35] proposed a new estimator, in which

the real and imaginary parts of the clean signal were estimated in the MMSE sense

conditional on the real and imaginary parts of the observed noisy signal. This estimator,

however, is not the optimal spectral amplitude estimator, which, we have pointed out

in Chapter 1, is more preferable perceptually.

Lotter and Vary [36] addressed the issue of finding the optimal spectral ampli-

tude estimator based on Gamma or Laplacian models. They found a closed form of

the spectral amplitude estimator, but they had to employ a parametric function to ap-

proximate the pdf of the spectral amplitude since the analytic solution of the pdf was

unknown to them. The parametric function had a simpler form and facilitated their

derivation but the authors did not specify how they obtained the parametric function,

and the parameters needed to be determined empirically. The following sections will

give more details about the methods mentioned above.
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2.2 The Gaussian based MMSE STSA Estimator

Let y(n) = x(n)+d(n) be the sampled noisy speech signal consisting of the clean signal

x(n) and the noise signal d(n). Taking the short-time Fourier transform of y(n), we

get:

Y (ωk) = X(ωk) +D(ωk) (2.1)

for ωk = 2πk/N where k = 0, 1, 2, ...N − 1, and N is the frame length. The above

equation can also be expressed in polar form as

Yke
jθy(k) = Xke

jθx(k) +Dke
jθd(k) (2.2)

For convenience, we denote the modulus |X(ωk)| as Xk or xk in the rest of the

dissertation. Since the spectral components are assumed to be statistically independent,

the MMSE amplitude estimator X̂k can be derived from Y (ωk) only. That is,

X̂k = E{Xk|Y (ω0), Y (ω1), ...} (2.3)

= E{Xk|Y (ωk)}

=

R∞
0

R 2π
0

xkp(Y (ωk)|xk, θk)p(xk, θk)dθkdxkR∞
0

R 2π
0

p(Y (ωk)|xk, θk)p(xk, θk)dθkdxk

where θk = θx(k).

Under the assumed Gaussian model, p(Y (ωk)|xk, θk) and p(xk, θk) are given

by [1]

p(Y (ωk)|xk, θk) =
1

πλd(k)
exp

½
− 1

λd(k)

¯̄
Yk −Xke

jθx(k)
¯̄2¾

(2.4)

p(xk, θk) =
xk

πλx(k)
exp

½
− X2

k

λx(k)

¾
(2.5)
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where λx(k)
4
= E{|Xk|2}, and λd(k)

4
= E{|Dk|2}, are the variances of the kth spectral

component of the speech and the noise respectively. Substituting Eq. (2.4) and Eq.

(2.5) into Eq. (2.3) gives [1]

X̂k = Γ(1.5)

√
υk
γk

M(−0.5; 1;−υk)Rk (2.6)

= Γ(1.5)

√
υk
γk

exp
³
−υk
2

´h
(1 + υk)I0

³υk
2

´
+ υkI1

³υk
2

´i
Yk

where Γ(·) denotes the gamma function, with Γ(1.5) = √π/2;M(a; c;x) is the confluent

hypergeometric function defined as

M(a; c;x) =
∞X
r=0

(a)r
(c)r

xr

r!

= 1 +
a

c

x

1!
+

a(a+ 1)

c(c+ 1)

x2

2!
+ ...

where (a)r
∆
= a(a+ 1) · · · (a+ r − 1), and (a)0 ∆

= 1. I0(̇·) and I1(·) denote the modified

Bessel functions of zero and first order, respectively, υk is defined by

υk
4
=

ξk
1 + ξk

γk (2.7a)

where ξk and γk are defined by

ξk
4
=

λx(k)

λd(k)
(2.7b)

γk
4
=

Y 2
k

λd(k)
(2.7c)

ξk and γk are interpreted as the a priori and a posteriori signal-to-noise ratio (SNR),

respectively. Ephraim-Malah [1] also showed that at high SNR, i.e. ξk À 1 and υk À 1,

M(−0.5; 1;−υk) '
√
υk

Γ(1.5)
υk À 1 (2.8)
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and the estimator can be simplified as

X̂k
4
=

ξk
1 + ξk

Yk (2.9)

which is theWiener estimator. Note that the confluent hypergeometric functionM(a; c;x)

can be efficiently calculated using [37].

2.3 The Laplacian/Gamma based MMSE Estimator of the Power Spectrum

Breithaupt and Martin [26] proposed their MMSE SSM in terms of the following com-

binations of statistical models:

1. Gaussian Noise and Gaussian Speech Model

2. Gaussian Noise and Gamma Speech Model

3. Laplacian Noise and Gamma Speech Model

The MMSE estimation of |Xk|2 is obtained by the conditional expectation

E{|Xk|2|Y (ωk)}. Since it is assumed that the real and imaginary parts of a DFT coeffi-

cient are independent and identically distributed(i.i.d), the estimation can be split into

an estimator for the real part XkR = Re{X(ωk)} and an estimator for the imaginary

part XkI =Imag{X(ωk)}. The estimator then becomes:

E{|Xk|2|Y (ωk)} = E{|XkR|2|YkR}+E{|XkI |2|YkI} (2.10)

The three distributions considered were:
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1. Gaussian pdf

px(x) =
1√
πλx

exp

µ
−x

2

λx

¶
(2.11)

2. Laplacian pdf

px(x) =
1

2
√
λx
exp

µ
− |x|√

λx

¶
(2.12)

3. Gamma pdf

px(x) =
4
√
3

2 4
√
2λx
√
π
|x|−1/2 exp

Ã
−
√
3√
2

|x|√
λx

!
(2.13)

.

Different combinations of the above pdfs were considered in [26] yielding different

estimators.

2.3.1 Gaussian Noise and Gaussian Speech Model

The MMSE estimator of the power spectral density E{|Xk|2|Y (ωk)} has been computed

in [38] and is given by:

E{|Xk|2|Y (ωk)} =
ξk

1 + ξk
λd(k) +

µ
ξk

1 + ξk
Yk

¶2
(2.14)

where ξk is the a priori SNR defined earlier.

2.3.2 Gaussian Noise and Gamma Speech Model

The following estimator was found when modeling the pdf of noise with a Gaussian

distribution and the pdf of speech by a Gamma distribution:

E{|XkR|2|YkR} =
3

16
λd(k)

Ψ
¡
5
4
, 1
2
;G2

+

¢
+Ψ

¡
5
4
, 1
2
;G2

−
¢

Ψ
¡
1
4
, 1
2
;G2

+

¢
+Ψ

¡
1
4
, 1
2
;G2

−
¢ (2.15)
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where

G± =

√
3

2
√
2
√
ξk
± |YkR|p

λd(k)
(2.16)

If we define

Den =
4
√
π

Γ(1
4
)
G−Φ

µ
3

4
,
3

2
;−G2

−

¶
(2.17)

− exp(−G2
−)

∙
Ψ

µ
1

4
,
1

2
;G2

+

¶
+Ψ

µ
5

4
,
1

2
;G2

−

¶¸
we have

E{|XkR|2|YkR} =
3

16
λd(k) ·

1

Den
·
½
16
√
π

Γ(1
4
)
G−Φ

µ
−1
4
,
3

2
;−G2

−

¶
(2.18)

− exp(−G2
−)

∙
Ψ

µ
5

4
,
1

2
;G2

+

¶
+Ψ

µ
5

4
,
1

2
;G2

−

¶¸¾
whereΦ(α; γ;x) = F1(α; γ;x) denotes the confluent hypergeometric function andΨ(α; γ;x)

is defined in [39].

2.3.3 Laplacian Noise and Gamma Speech Model

Assuming a Laplacian pdf for the noise DFT coefficients, and a Gamma pdf for the

speech DFT coefficients, we get the MMSE estimator of the squared real part of the

clean speech DFT coefficient as follows:

E{|XkR|2|YkR} =
λd(k)

4G2
+

· 1

Den
·
©
3
√
π (2.19)

+4 exp

Ã
−G−

|YR|p
λd(k)

!
Ψ

Ã
−3
2
,−3
2
;G+

|YkR|p
λd(k)

!

+
8

5

Ã
G+

|YkR|p
λd(k)

!5/2
Φ

Ã
8

5
,
7

2
;−G−

|YkR|p
λd(k)

!⎫⎬⎭
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where

G± =

√
3√

2
√
ξk
± 2 (2.20)

and

Den =
√
π + exp(−G2

−
|YR|p
λd(k)

)Ψ

Ã
1

2
,
1

2
;G+

|YkR|p
λd(k)

!

+2

Ã
G+

|YkR|p
λd(k)

!1/2
Φ

Ã
1

2
,
3

2
;−G−

|YkR|p
λd(k)

!

With the signal modeled by a Gamma pdf, the authors [26] obtained consis-

tently better results than those modeled by Gaussian pdf. However, musical noise was

introduced with the Gaussian/Gamma estimator. That is probably due to inaccuracy

of power spectrum estimation. A detailed discussion about the relation between a pri-

ori SNR and musical noise in MMSE based algorithms can be found in [1] [40]. A

potential improvement with the multitaper method was presented in [41] [19] [42] but

the authors did not compare their work to it.

2.4 The Laplacian/Gamma based Complex Spectrum MMSE Estimator

Following the approach in [26], Martin [35] also derived complex spectrum MMSE

estimators assuming the following pdfs for the speech and noise DFT coefficients:

1. Gaussian Noise and Gaussian Speech Model

2. Gaussian Noise and Laplacian Speech Model

3. Laplacian Noise and Speech Model
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For each of the above three combinations of pdfs, Martin [35] found an ana-

lytical solution for estimating complex DFT coefficients in the MMSE sense. In his

derivation, he also assumed that the real and imaginary parts of a DFT coefficient

were independent and identically distributed(i.i.d). The estimation can be split into an

estimator for the real part XkR = Re{X(ωk)} and an estimator for the imaginary part

XkI =Imag{X(ωk)}. The estimator then becomes

E{X(ωk)|Y (ωk)} = E{XkR|YkR}+ jE{XkI |YkI} (2.21)

The MMSE complex spectrum estimators based on the above three combinations of

modeling are briefly introduced in the following sections.

2.4.1 Gaussian Noise and Gaussian Speech Model

When both noise and speech DFT coefficients are assumed to have complex Gaussian

pdfs, the optimal MMSE estimator is the Wiener filter [43]:

X̂k = E{X(ωk)|Y (ωk)} =
λx(k)

λx(k) + λd(k)
Yk =

ξk
1 + ξk

Yk (2.22)

where λx(k)
∆
= E{X2

k}, λd(k)
∆
= E{D2

k}, and ξk denotes the a priori SNR at frequency

bin k.

2.4.2 Gaussian Noise and Laplacian Speech Model

Assuming now that the prior of speech DFT coefficients is Laplacian distributed and

the noise is Gaussian distributed, we get:

E{XkR|YkR} =
p
λd(k)

£
LR+ exp

¡
L2R+

¢
erfc(LR+)− LR− exp

¡
L2R−

¢
erfc(LR−)

¤
exp

³
L2R+

´
erfc(LR+) + exp

³
L2R−

´
erfc(LR−)

(2.23)
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E{XkI |YkI} =
p
λd(k)

£
LI+ exp

¡
L2I+

¢
erfc(LI+)− LI− exp

¡
L2I−

¢
erfc(LI−)

¤
exp

³
L2I+

´
erfc(LI+) + exp

³
L2I−

´
erfc(LI−)

(2.24)

where erfc (·) is the error function [44] and

LkR+ =
1√
ξk
+

YkRp
λd(k)

LkR− =
1√
ξk
− YkRp

λd(k)

LkI+ =
1√
ξk
+

YkIp
λd(k)

LkI− =
1√
ξk
− YkIp

λd(k)

2.4.3 Laplacian Noise and Speech models

When both the real and the imaginary components of the noise and the speech coeffi-

cients are modeled by a Laplacian pdf, the optimal estimator of the real part is given

by

E{XkR|YkR} =
sign(YkR)

exp

µ
−2|YkR|√

λd(k)

¶p
λd(k)− exp

µ
−2|YkR|√

λx(k)

¶p
λx(k)

· λx(k)λd(k)

λd(k)− λx(k)

Ã
exp

Ã
−2|YkR|p
λd(k)

!
− exp

Ã
−2|YkR|p
λx(k)

!!

−|YkR| exp
Ã
−2|YkR|p
λx(k)

!p
λx(k)

Although separate treatment of the DFT components simplifies the derivation

to some degree, the estimators appear to be complicated. Experimental results con-

firmed that the above MMSE estimators performed significantly better than the squared

spectrum magnitude estimators [26] in terms of segmental SNR.
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2.5 MAP STSA Estimator using a parametric approximation function

As mentioned earlier, a spectral amplitude estimator is more preferable than a complex

spectrum estimator. Lotter and Vary [36] proposed a MMSE Short Time Spectral

Amplitude (STSA) estimator using a parametric function to approximate the pdf of

the spectral amplitude. The pdf of the spectral amplitude was approximated by the

following parametric function:

p(Xk) =
μα+1

Γ(α+ 1)

Xα
k

λx(k)
α+1
2

exp

(
−μ Xkp

λx(k)

)

where α and μ are parameters. The parametric function was shown to match the

histogram of p(Xk) (the true spectral amplitude pdf) best when α = 1 and μ = 2.5.

Using the above parametric approximation function, Lotter and Vary [36] sought

a Maximum a Posterior (MAP) estimator, i.e.,

X̂k = argmax
Xk

{p(Xk|Yk)} = argmax
Xk

½
p(Yk|Xk)p(Xk)

p(Yk)

¾
(2.25)

Since p(Yk) is independent of Xk, we can maximize:

p(Yk|Xk)p(Xk) = X
α−1

2
k exp

(
−X

2
k

δ2N
−Xk

Ã
μp
λx(k)

− 2Yk
λd(k)

!)
(2.26)

After taking the log of p(Yk|Xk)p(Xk), and differentiating it with respect to Xk, we get:

d log [p(Yk|Xk)p(Xk)]

dXk
=

µ
α− 1

2

¶
1

Xk
− 2Xk

λd(k)
− μp

λx(k)
+
2Yk
λd(k)

= 0

Solving for Xk, we get the following MAP estimator:

X̂k = Yk

⎛⎝u+

s
u2 +

α− 1
2

2γk

⎞⎠ (2.27)
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where u = 1
2
− μ

4
√
γξ

The MAP estimator was evaluated with 3 kinds of noise: white, ventilator, and

cafeteria noise. Better noise reduction was achieved with the MAP estimator compared

to the MMSE estimator [1].

2.6 Summary

TheMMSE estimation of speech spectrum have received considerable research attention

[1] [13] [21] [22]. Although significant progress has been made in the above mentioned

methods, each of them has its own weaknesses and limitations either on the underlying

assumptions or derivation of the estimators. The fact that Laplacian and Gamma

are better than the Gaussian pdf for modeling the speech DFT coefficients has been

recognized and empirically verified by many researchers. Therefore, many have focused

on Laplacian/Gamma based estimators. None of them, however, has succeeded in

finding the preferred optimal spectral amplitude estimator in the MMSE sense.



CHAPTER 3

LAPLACIAN-BASED MMSE STSA ESTIMATOR

3.1 Introduction

The basic idea of Laplacian basedMMSE STSA estimator is to find the optimal estimate

of the modulus of the speech signal DFT components in the MMSE sense, based on the

assumption that the real and imaginary parts of these components are modeled by a

Laplacian distribution. The noise signal DFT components are assumed to be Gaussian

distributed. Note that the assumption about noise DFT component is valid regardless

of whether the noise is white or colored. One of the challenges in deriving such an

estimator is to compute the pdf of spectral amplitude. It is especially complicated

when the real and imaginary parts of the DFT coefficients are modeled by a Laplacian

distribution. The Laplacian assumption makes the derivation in question even more

difficult in that independence between amplitude and phase no longer holds with the

Laplacian distribution.

In this chapter, we derive two Laplacian-based MMSE STSA estimators. The

first estimator makes no assumptions or approximations. The second estimator makes

a mild assumption about the independence of spectral amplitude and phase. This

assumption enables us to derive the MMSE estimator in closed form.
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3.2 True Laplacian Based Estimator

In this section, we derive the Laplacian based estimator making no assumptions about

the independence of amplitude and phase.

3.2.1 Principles

According to the last chapter, the MMSE magnitude estimator is given as:

X̂k = E{Xk|Y (ωk)}, k = 0, 1, 2, ...N − 1 (3.1)

=

R∞
0

R 2π
0

xkp(Y (ωk)|xk, θk)p(xk, θk)dθkdxkR∞
0

R 2π
0

p(Y (ωk)|xk, θk)p(xk, θk)dθkdxk
where p(Y (ωk)|xk, θk) is the conditional pdf of noisy spectrum and is given by:

p(Y (ωk)|xk, θk) =
1

πλd(k)
exp

½
− 1

λd(k)
|Y (ωk)−X(ωk)|2

¾
(3.2)

and p(xk, θk) is the joint pdf of the magnitude spectrum and phases. Following the

procedure in [45], it is easy to show that p(xk, θk) is given by:

p(xk, θk) =
xk

2
p
λx(k)

exp

"
− xkp

λx(k)
(|cos θk|+ |sin θk|)

#
(3.3)

Substituting Eq. (3.2) and Eq. (3.3) into Eq. (3.1), we get:

X̂k =

R∞
0

R 2π
0

x2k exp
h
−Y 2k −2xkRe{e−jθxY (ωk)}+X2

k

λd(k)

i
exp

∙
−xk√
λx(k)

(|cos θk|+ |sin θk|)
¸
dθxdxkR∞

0

R 2π
0

xk exp
h
−Y 2k −2xkRe{e−jθxY (ωk)}+X2

k

λd(k)

i
exp

∙
−xk√
λx(k)

(|cos θk|+ |sin θk|)
¸
dθxdxk

=

R∞
0

x2k exp
³
− X2

k

λd(k)

´ R 2π
0
exp

µ
2xk cos θkY (ωk)

λd(k)
− xk|cos θk|√

λx(k)
− xk|sin θk|√

λx(k)

¶
dθxdxkR∞

0
xk exp

³
− X2

k

λd(k)

´ R 2π
0
exp

µ
2xk cos θkY (ωk)

λd(k)
− xk|cos θk|√

λx(k)
− xk|sin θk|√

λx(k)

¶
dθxdxk

(3.4)

=

R∞
0

x2k exp
³
− X2

k

λd(k)

´ R 2π
0
exp

∙µ
2xkY (ωk)
λd(k)

± xk√
λx(k)

¶
cos θk ± xk√

λx(k)
sin θk

¸
dθxdxkR∞

0
xk exp

³
− X2

k

λd(k)

´ R 2π
0
exp

∙µ
2xkY (ωk)
λd(k)

± xk√
λx(k)

¶
cos θk ± xk√

λx(k)
sin θk

¸
dθxdxk
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Note that we have 4 cases (±X±) to evaluate since we have |cos θk| and |sin θk|

in [0 2π]. For
R 2π
0
exp

∙µ
2xkY (ωk)
λd(k)

± xk√
λx(k)

¶
cos θk ± xk√

λx(k)
sin θk

¸
dθx, we transform

A cos θk ± B sin θk into
√
A2 +B2 cos(θk ∓ arccos A√

A2+B2
) first and then integrate it.

There is, however, the difficulty that A = 2xkY (ωk)
λd(k)

± xk√
λx(k)

and B = xk√
λx(k)

are

determined by experimental data since the λd(k), noise variance, and λx(k), signal

variance, are involved. The derivation can not go on with a variable angle arccos A√
A2+B2

determined empirically because we can not determine the integral limits.

We were not able to find the closed form solution of the estimator in Eq. (3.4),

which we will be referring to as the LapMMSE estimator. Hence, we took an alterna-

tive approach, and made some assumptions about the independence of magnitude and

phase.

3.2.2 Derivation of pdf of spectral amplitude with complex Laplacian distributed DFT
coefficients

It is known that if XR and XI are Gaussian distributed, then X =
p
X2

R +X2
I is

Rayleigh distributed. The distribution of X is not known when XR and XI are

Laplacian distributed. We, therefore, focused on deriving the pdf of the spectral am-

plitude with complex Laplacian distributed DFT coefficients. The pdf of the spectral

amplitude is given by (see Appendix A):

pX(x) =
2x

λ

Z π/4

0

exp(−
√
2√
λ
x cos θ)dθ (3.5)
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where λ denotes the variance. Solving the integral in Eq. (A.13) (see Appendix A), we

get the resulting pdf:

pX(x) =
πx

2λ
I0

Ã
−
√
2√
λ
x

!
+
4x

λ

∞X
n=1

1

n
In

Ã
−
√
2√
λ
x

!
sin

πn

4
, x > 0 (3.6)

where In(·) denotes the modified Bessel function of nth order [39]. In the following

derivations, λx(k) denotes the variance of signal x at frequency bin k. Similarly, Xk

denotes the spectral magnitude of signal x at frequency bin k.

Simulations were run to verify that the derived pdf of the spectral ampli-

tude Xk is correct. Figure 3.1 shows these simulations, where the ”+” line repre-

sents the plot of the function pX(x) =
2x
σ2

R π/4
0

exp(−
√
2
δ
x cos θ)dθ by numerical com-

putation, while the solid line represents the plot from its solution πx
2λ
I0
³
−
√
2√
λ
x
´
+

4x
λ

P∞
n=1

1
n
In
³
−
√
2√
λ
x
´
sin πn

4
. We can see that the two plots are almost the same. The

small difference is due to the truncation of the infinite summation in Eq. (3.6) to the

first 40 terms.

Let us consider the joint pdf of the magnitude spectrum and phases, p(xk, θk).

The marginal pdf p(xk) is clearly the pdf of the spectral amplitude Xk and is given by

Eq. (3.6). The marginal pdf p(θk) is given by:

p(θk) =
xk
2σ

Z ∞

0

exp
h
−xk

σ
(|cos θk|+ |sin θk|)

i
dxk (3.7)

= − xk
2 |cos θk|+ 2 |sin θk|

exp
h
−xk

σ
(|cos θk|+ |sin θk|)

i
/∞0

− σ

2 + 4 |cos θk sin θk|
exp

h
−xk

σ
(|cos θk|+ |sin θk|)

i
/∞0

=
σ

2 + 4 |cos θk sin θk|
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Figure 3.1. The pdf of the magnitude DFT coefficients assuming the real and imaginary
parts are modeled by a Laplacian distribution (σ2 = 1). The plot indicated by ’+’ shows
the pdf computed by numerical integration of Eq. (A.5). The plot indicated by the
solid line shows the pdf approximated by truncating the infinite summation in Eq.
(3.6) with the first 40 terms. The Rayleigh distribution (dashed line), used in the
Gaussian-based MMSE estimator [1], is superimposed for comparative purposes.
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The joint pdf p(xk, θk) is given by:

p(xk, θk) =
xk

2
p
λx(k)

exp

"
− xkp

λx(k)
(|cos θk|+ |sin θk|)

#
(3.8)

It is clear that p(xk, θk) 6= p(xk) · p(θk), hence the amplitude is not independent

of the phase. The fact that Xk and θk are not independent complicates the derivation

of the MMSE estimator (see Eq. (3.4)). Hence, we examined whether Xk and θk were

"nearly" independent.

3.3 Approximate Laplacian MMSE estimator

It is known that complex zero mean Gaussian random variables have magnitudes and

phases which are statistically independent [45]. Furthermore, the phases have a uniform

distribution. This is not the case, however, with the complex Laplacian distributions

proposed in this dissertation for modeling the speech DFT coefficients. Further analysis

of the joint pdf of the magnitudes and phases, p(xk, θk), however, revealed that the

pdfs of the magnitudes and phases are nearly statistically independent, at least for a

certain range of magnitude values. To show that, we derived the marginal pdfs of the

magnitudes and phases and examined whether p(xk, θk) ≈ p(xk)p(θk).

The marginal pdf of the amplitudes and the phases have been given in the last

section. Figures 3.2 and 3.3 show plots of the joint density p(xk, θk) as well as plots

of the product of the magnitude and phase pdfs. Figure 3.2 shows the joint density

p(xk, θk), Figure 3.3 shows p(xk)p(θk) and Figure 3.4 shows the absolute difference

between the densities displayed in Figures 3.2 and 3.3. As can be seen, the difference
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Figure 3.2. Plot of the joint density p(xk, θ) of a zero mean complex Laplacian random
variable (σ2 = 1).

between the two densities is large near xk ≈ 0, but is near zero for xk > 2. The plot

in Figure 3.4 demonstrates that the magnitudes and phases are nearly independent, at

least for a specific range of magnitude values (xk > 2, θk ∈ [−π, π]). We can therefore

make the approximation that the joint density p(xk, θk) ≈ p(xk)p(θk).

We further analyzed the phase pdf, p(θk), to determine the shape of the distri-

bution and examine whether it is similar to a uniform distribution. Figure 3.5 shows

the plot of p(θk) along with a uniform distribution. The density p(θk) is clearly not

uniform, but it has characteristics similar to a uniform distribution, i.e., it is relatively
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Figure 3.3. Plot of p(xk)p(θ), where p(xk) is given by Eq. (3.6) and p(θ) is given by
Eq. (3.7) [λx(k) = 1].
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flat for θk ∈ [−π, π]. We therefore approximated p(θk) with a uniform distribution, i.e.,

p(θk) ≈ 1/(2π) for θk ∈ [−π, π].

Based on the above two assumptions (statistical independence between xk and

θk, and a uniform distribution for the phases), we approximated the joint density in Eq.

(3.1) with p(xk, θk) ≈ 1
2π
p(xk), where p(xk) is the density of the spectral magnitudes.

After substituting Eq. (3.2) and Eq. (3.6) into Eq. (3.1), we obtain the MMSE

estimator in closed form as follows (see Appendix B for detailed derivation):

X̂k =
Ak +Bk

Ck +Dk
(3.9a)

where

Ak =

³
Y 2k
γk

´ 3
2

2

∞X
m=0

Γ(m+ 3
2
)

m!Γ(m+ 1)

µ
γk

2ξ2kY
2
k

¶m

· F
¡
−m,−m; 1; 2ξ2kY 2

k

¢
(3.9b)

Bk =
8

π

∞X
n=1

1

n
sin

πn

4

³
2γk
Yk

´n ³
γk
Y 2k

´−n+3
2

2n+1Γ(n+ 1)
·
∞X

m=0

Γ(m+ 1
2
n+ 3

2
)

m!Γ(m+ 1)

µ
γk

2ξ2kY
2
k

¶m

(3.9c)

·F
¡
−m,−m;n+ 1; 2ξ2kY 2

k

¢

Ck =
Y 2
k

2γk

∞X
m=0

1

m!

µ
γk

2ξ2kY
2
k

¶m

· F
¡
−m,−m; 1; 2ξ2kY 2

k

¢
(3.9d)
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Dk =
8

π

∞X
n=1

1

n
sin

πn

4

³
2γk
Yk

´n ³
γk
Y 2k

´−n
2
−1

2n+1Γ(n+ 1)
·
∞X

m=0

Γ(m+ 1
2
n+ 1)

m!Γ(m+ 1)

µ
γk

2ξ2kY
2
k

¶m

(3.9e)

·F
¡
−m,−m;n+ 1; 2ξ2kY 2

k

¢
Equation Eq. (3.9a) gives the approximate Laplacian MMSE estimator of the

spectral magnitudes. We will be referring to this estimator as the ApLapMMSE esti-

mator.

3.4 Discussion on Convergence

Equation (3.6) and Eq. (3.9b)-Eq. (3.9e) involve infinite summations. Hence, their

convergence is at question.

First, let us consider the convergence of Eq. (3.6). We found that it converges

to the true value with 40 terms provided that Xk ∈ [0, 10]. For Xk taking larger values,

however, we found that a larger number of terms is required, as demonstrated in Figures

3.6 and 3.7, which show divergence when Xk is evaluated at Xk > 18 but convergence

again when the first 80 terms are evaluated. Hence, the larger Xk is, the more terms

are needed in Eq. (3.6).

Next, we consider convergence of Eq. (3.9b)-Eq. (3.9e). We plot, in Figures

3.8-3.11, the first 40 elements of the four terms, Ak, Bk, Ck, and Dk, respectively, with

ξk = 1, γk = 1, and Yk = 1. For the second summation in terms Bk and Dk, we still

use the first 40 terms. Note that the Bessel functions involved in the derived closed

form solution may still cause numerical issues in practice. The solution, however, was
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Figure 3.6. The solution diverges when magnitude is greater than 20 with the first 40
terms.

verified to converge empirically and theoretically.

As shown in Figures 3.8-3.11, the elements of all the four terms eventually con-

verge to zero. Therefore, summations of those elements are bounded, and the solution

given by Eq. (3.9b)-Eq. (3.9e) converges.
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Figure 3.8. Plot of the first 40 elements in term A of Eq. (3.9b).
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Figure 3.9. Plot of the first 40 elements in term B of Eq. (3.9c).
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Figure 3.10. Plot of the first 40 elements in term C of Eq. (3.9d).
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Figure 3.11. Plot of the first 40 elements in term D of Eq. (3.9e).



CHAPTER 4

AMPLITUDE ESTIMATOR UNDER SPEECH PRESENCE UNCERTAINTY

In the previous chapter, it was implicitly assumed that speech was present at all times.

However, running speech contains a great deal of pauses, even during speech activity.

The stop closures, for example, which are brief silence periods occurring before the burst

of stop consonants, often appear in the middle of a sentence. Also, speech might not be

present at a particular frequency even during voiced speech segments. In fact, this was

exploited in multi-band speech coders where the spectrum was divided into bands, and

each band was declared as being voiced or unvoiced (random-like). The voiced bands

were assumed to be generated by a periodic excitation while the unvoiced bands were

assumed to be generated by random noise. Such mixed-source excitation models were

shown to produce better speech quality than the traditional voiced/unvoiced models.

It follows then, that a better noise suppression rule might be produced if we assume a

two-state model for speech events, that is, that either speech is present (at a particular

frequency bin) or it is not.

Next, we present methods that incorporate the fact that speech might not be

present at all frequencies and at all times. Intuitively, this amounts to multiplying

the estimators Eq. (3.1) by a term that provides an estimate of the probability that

speech is absent at a particular frequency bin. We call such estimators Speech-Presence

39
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Uncertainty (SPU) estimators. SPU estimators are not new and have been studied

in [46] [1] [47] [48]. None of these estimators incorporated Laplacian modeling of the

DFT coefficients.

4.1 Incorporating Speech-Presence Uncertainty in MMSE Estimators

In this section, we derive the MMSE magnitude estimator under the assumed Laplacian

model and uncertainty of speech presence. We consider a two-state model for speech

events, that is, that either speech is present at a particular frequency bin (hypothesis

H1) or that is not (hypothesisH0). This is expressed mathematically using the following

binary hypothesis model:

Hk
0 : speech absence: Y (ωk) = D(ωk) (4.1a)

Hk
1 : speech present: Y (ωk) = X(ωk) +D(ωk) (4.1b)

To incorporate the above binary model to an MMSE estimator, we can use a weighted

average of two estimators: one that is weighted by the probability that speech is present,

and one that is weighted by the probability that speech is absent. So, if the original

MMSE estimator had the form X̂k = E(Xk|Y (ωk)), then the new estimator has the

form:

X̂k = E(Xk|Y (ωk), Hk
1 )P (H

k
1 |Y (ωk)) + E(Xk|Y (ωk), Hk

0 )P (H
k
0 |Y (ωk)) (4.2)

where P (Hk
1 |Y (ωk)) denotes the conditional probability that speech is present in fre-

quency bin k given the noisy speech spectrum. Similarly, P (Hk
0 |Y (ωk)) denotes the
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conditional probability that speech is absent given the noisy speech spectrum. The

term E(Xk|Y (ωk),Hk
0 ) in the above equation is zero since it represents the average

value of Xk given the noisy spectrum Y (ωk) and the fact that speech is absent. There-

fore, the MMSE estimator in Eq. (4.2) reduces to:

X̂k = E(Xk|Y (ωk), Hk
1 )P (H

k
1 |Y (ωk)) (4.3)

Bayes’ rule [43] can be used to compute P (Hk
1 |Y (ωk)). The MMSE estimator of the

spectral component at frequency bin k is weighted by the probability that speech is

present at that frequency:

P (Hk
1 |Y (ωk)) =

p(Y (ωk)|Hk
1 )P (H1)

p(Y (ωk)|Hk
1 )P (H

k
1 ) + p(Y (ωk)|Hk

0 )P (H0)
(4.4)

=
Λ(Y (ωk), qk)

1 + Λ(Y (ωk), qk)

where Λ(Y (ωk), qk) is the generalized likelihood ratio defined by:

Λ(Y (ωk), qk) =
1− qk
qk

p(Y (ωk)|Hk
1 )

p(Y (ωk)|Hk
0 )

(4.5)

where qk = P (Hk
0 ) denotes the a priori probability of speech absence for frequency

bin k. The a priori probability of speech presence, i.e., P (Hk
1 ), is given by (1 − qk).

Theoretically, the optimal estimate under hypothesis Hk
0 is identical to zero but a small

nonzero value might be preferable for perceptual purposes [49].

Under hypothesis H0, Y (ωk) = D(ωk), and given that the noise is complex

Gaussian with zero mean and variance λd(k), it follows that p(Y (ωk)|Hk
0 ) will also have
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a Gaussian distribution with the same variance, i.e.,

p(Y (ωk)|Hk
0 ) =

1

πλd(k)
exp

µ
− Y 2

k

λd(k)

¶
(4.6)

If X(ωk) follows a Laplacian distribution, we need to compute p(Y (ωk)|Hk
1 ). Assuming

independence between real and imaginary components, we have:

p(Y (ωk)|Hk
1 ) = p(zr, zi) = pZr(k)(zr)pZi(k)(zi) (4.7)

where Zr(k) = Re{Y (ωk)}, and Zi(k) = Im{Y (ωk)}.

Under hypothesis H1, we need to derive the pdf of Y (ωk) = X(ωk) + D(ωk),

where X(ωk) = Xr(ωk) + jXi(ωk) and D(ωk) = Dr(ωk) + jDi(ωk). The pdfs of

Xr(ωk) and Xi(ωk) are assumed to be Laplacian and the pdfs of Dr(ωk) and Dr(ωk)

are assumed to be Gaussian with variance σ2d/2 and zero mean. We assume that

pXr(xr) =
1
2σx
exp(− |xr |

σx
), and pDr(dr) =

1√
πσd
exp(− d2r

σ2d
). The derivation of 4.7 is given

in Appendix C. The solution for Eq. (4.7) is given by:

pZr(k)(zr) =

√
γk exp(

1
2ξk
)

2
√
2ξkYk

∙
exp(−

√
γkzr

Yk
√
ξk
) + exp(

√
γkzr√
ξkYk

)+ (4.8)

exp(−
√
γkzr√
ξkYk

)erf(

√
γkzr√
ξkYk

− 1√
ξk
)− exp(

√
γkzr√
ξkYk

)erf(

√
γkzr√
ξkYk

+
1√
ξk
)

¸

pzi(k)(zi) =

√
γk exp(

1
2ξk
)

2
√
2ξkYk

∙
exp(−

√
γkzi

Yk
√
ξk
) + exp(

√
γkzi√
ξkYk

)+ (4.9)

exp(−
√
γkzi√
ξkYk

)erf(

√
γkzi√
ξkYk

− 1√
ξk
)− exp(

√
γkzi√
ξkYk

)erf(

√
γkzi√
ξkYk

+
1√
ξk
)

¸
where erf(.) is the error function [44], ξk = λx(k)/λd(k) (a priori SNR) and γk =

Y 2
k /λd(k) (a posteriori SNR). Simply substituting Eq. (4.7) and Eq. (4.6) into Eq.

(4.4) and Eq. (4.5), we obtain the Speech Presence Uncertainty (SPU) estimator.
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4.2 Relation between SPU and a priori SNR ξk

Intuitively, the relation between SPU and a priori SNR ξk should remain the same

whether the speech signal is modeled by Gaussian or Laplacian distribution. In order

to illustrate this relationship, we examined it under the condition that the speech signal

is modeled by a Gaussian pdf. In this case, the pdf p(Y (ωk)|Hk
1 ) is given by:

p(Y (ωk)|Hk
1 ) =

1

π [λd(k) + λx(k)]
exp

µ
− Y 2

k

λd(k) + λx(k)

¶
(4.10)

Note that under hypothesis H1, Y (ωk) = X(ωk) +D(ωk), and the pdfs of X(ωk) and

D(ωk) are complex Gaussian with zero mean and variances λd(k) and λx(k) respectively.

It follows that Y (ωk) will also have a Gaussian distribution with variance λd(k)+λx(k).

The expression for the likelihood ratio is given by Eq. (4.5):

Λ(Y (ωk), qk, ξ
0
k) =

1− qk
qk

exp
h

ξ0k
1+ξ0k

γk
i

1 + ξ0k
(4.11)

where ξ0k indicates the conditional a priori SNR:

ξ0k
∆
=

E
£
X2

k |Hk
1

¤
λd(k)

(4.12)

Note that ξk is the unconditional a priori SNR, whose relation with the conditional a

priori SNR defined in Eq. (4.12) can be expressed as follows

ξk =
E [X2

k ]

λd(k)
= p(Hk

1 )
E
£
X2

k |Hk
1

¤
λd(k)

(4.13)

= (1− qk)ξ
0
k

Substituting Eq. (4.11) into Eq. (4.4), the a posteriori probability of speech presence

becomes:

P (Hk
1 |Y (ωk)) =

1− qk
1− qk + qk(1 + ξ0k) exp(−υ0k)

(4.14)
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where υ0k =
ξ0k

ξ0k+1
γk

From Eq. (4.14) we note that when ξ0k is large, speech is surely present, and

P (Hk
1 |Y (ωk)) ≈ 1, as expected. On the other hand, when ξ0k is extremely small,

P (Hk
1 |Y (ωk)) ≈ 1 − qk, i.e., it is equal to the a priori probability of speech presence,

P (Hk
1 ).

For Laplacian modeling, it is very difficult to derive an explicit relation between

ξk and P (Hk
1 |Y (ωk)) as in Eq. (4.14), since the P (Hk

1 |Y (ωk)) term derived with Lapla-

cian modeling is highly non-linear. Therefore, we plotted P (Hk
1 |Y (ωk)) to facilitate

our comparison with the Gaussian-based P (Hk
1 |Y (ωk)) (Eq. (4.14)). Figure 4.1 plots

P (Hk
1 |Y (ωk)) as a function of a priori SNR ξk for different values of the noise variance

λd and for qk = 0.3 (we did not make use of ξ0k in the derived estimator). As the

Figure shows, both estimates of P (Hk
1 |Y (ωk)) follow the same trend. As ξk increases,

P (Hk
1 |Y (ωk)) −→ 1. The main difference lies in extremely low values of ξk. The

estimate of P (Hk
1 |Y (ωk)) based on Laplacian modeling progressively goes to zero as

ξk −→ 0, while the estimate of P (Hk
1 |Y (ωk)) based on Gaussian modeling (Eq. (4.14))

approaches P (Hk
1 |Y (ωk)) ≈ 1− qk.



45

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ
k

P
(H

k 1|Y
(ω

k))

0.5
1

2

Figure 4.1. P (Hk
1 |Y (ωk)) as a function of a priori SNR ξk for the noise variance

λd = 0.5, 1, and 2, respectively. The solid line plots P (Hk
1 |Y (ωk)) for the Laplacian

distribution, and the dotted line plots P (Hk
1 |Y (ωk)) for the Gaussian distribution as in

Eq. (4.14)



CHAPTER 5

IMPLEMENTATION AND PERFORMANCE EVALUATION

As discussed in Chapter 3, the closed form solution (Eq. (3.9a)) involved Bessel func-

tions and infinite series. Numerical computation issues had to be taken into account in

the implementation, and these are discussed next.

5.1 Numerical Integration

We have shown that retaining only the first 40 terms in Eq. (3.6) gave a good approxi-

mation of p(xk). This is demonstrated in Figure 3.1, which shows p(xk) estimated using

numerical integration techniques and also approximated by truncating the summation

in Eq. (3.6) to the first 40 terms. However, as also shown in Eq. (3.9a), the derived

ApLapMMSE estimator is highly nonlinear since it involves infinite summations. We

initially truncated the infinite summations to a large number of terms, however, simu-

lations indicated that such an approximation led to numerical instability issues. That

was due to the characteristics of the Bessel function diverging with spectral magnitudes

increasing. For that reason, we chose to use numerical integration techniques [50] to

evaluate the integrals in Eq. (3.1). Numerical integration techniques were also used to

evaluate the integrals involved in the LapMMSE estimator in Eq. (3.4).

Many numerical integration techniques exist in the literature. For this work,

46
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we choose the techniques in [50] due to its lower computation complexity than others.

We extended the numerical integration technique to calculate the integral of product

of two functions as shown in Eq. (5.1). More specifically, the following equation was

used (see Appendix D):

DZ
C

g(x)F (x)dx =
∆

3
g(x0)F (x0) +

∆

6
g(x0)F (x1) (5.1)

+
∆

3
g(xM)F (xM) +

∆

6
g(xM−1)F (xM)

+
M−1X
l=1

∙
2∆

3
g(xl)F (xl) +

2∆

3
g(xl+1)F (xl) +

∆

6
g(xl)F (xl−1)

¸
where the interval [C,D] is divided evenly into M subintervals and ∆ = D−C

M
. Deter-

mination of M is based on a trade-off between accuracy and computation load. We

applied the above numerical integration technique to find the solutions of both Eq.

(3.4) and Eq. (B.2). MATLAB source code is provided in Appendix F.

In the simulations, we found that the terms B and D in Eq. (3.9a) are always

very small compared to terms A and C. So those two terms were neglected from

computation to further reduce the computational load.

5.2 Decision-Directed Estimation Approach

In the proposed estimator, the a priori SNR ξk is unknown and we have to estimate

it in order to implement the estimator (Eq. (3.9a)). The reason ξk is unknown is

because the clean signal is unavailable. The “decision-directed” approach [1] was used

to estimate ξk.

As before, let ξk(n), Xk(n), λd(k, n), and γk(n) denote the a priori SNR, the
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magnitude, the noise variance, and the a posteriori SNR, respectively, of the corre-

sponding kth spectral component in the nth analysis frame. The derivation of the a

priori SNR estimator is based on the definition of ξk, and its relation to the a posteriori

SNR γk, as given below:

ξk(n) =
E{X2

k(n)}
λd(k, n)

(5.2)

ξk(n) = E{γk(n)− 1} (5.3)

Combining Eq. (5.2) and Eq. (5.3) we have

ξk(n) = E

½
1

2

X2
k(n)

λd(k, n)
+
1

2
[γk(n)− 1]

¾
(5.4)

The proposed estimator ξ̂k of ξk is deduced from Eq. (5.4), and is given by:

ξ̂k(n) = α
X̂2

k(n− 1)
λd(k, n− 1)

+ (1− α)P [γk(n)− 1], 0 6 α < 1 (5.5)

where X̂k(n − 1) is the estimated amplitude of the kth signal spectral component in

the (n− 1)th analysis frame, and P [·] is an operator defined by

P [x] =

½
x if x > 0
0 otherwise

(5.6)

We see that ξ̂k(n) is obtained from Eq. (5.4) by dropping the expectation operator,

and using use the estimated amplitude of the (n− 1)th frame instead of the amplitude

in the current frame which we do not know. P [·] is used to ensure the positiveness of

the proposed estimator in case (γk(n)− 1) is negative.

The above estimator for ξk(n) is a "decision-directed" type estimator, since ξ̂k(n)

is updated on the basis of a previous amplitude estimate. By using Xk(n) = G(ξ̂k(n),
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γk(n))Rk(n), where G(·, ·) is a gain function which results from the proposed amplitude

estimator, Eq. (5.5) can be written in a way which emphasizes its recursive nature.

From Eq. (5.5), we get

ξ̂k(n) = αG2(ξ̂k(n− 1), γk(n− 1))γk(n− 1) + (1− α)P [γk(n)− 1] (5.7)

The initial conditions need to be determined and ξk(0) = α + (1 − α)P [γk(0) − 1] is

found appropriate since it minimizes initial transition effects in the enhanced speech.

The theoretical investigation of the recursive estimator Eq. (5.7) is very com-

plicated due to its highly nonlinear nature, even for the simple gain function of the

Wiener amplitude estimator. We used α = 0.98 in Eq. (5.7) for all simulations.

5.3 Performance Evaluation

Twenty sentences from the TIMIT database were used for the objective evaluation of

the proposed LapMMSE estimator, 10 produced by female speakers and 10 produced

by male speakers. The TIMIT sentences were downsampled to 8 kHz. Speech-shaped

noise constructed from the long-term spectrum of the TIMIT sentences as well as F-

16 cockpit noise were added to the clean speech files at 0, 5 and 10 dB SNR. An

estimate of the noise spectrum was obtained from the initial 100-ms segment of each

sentence [28] [51]. The noise spectrum estimate was not updated in subsequent frames.

The proposed estimators were applied to 20-ms duration frames of speech using

a Hamming window [52], with 50% overlap between frames. The enhanced signal was

combined using the overlap and add approach [53] [54]. The STSA of the speech
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signal was then estimated, and combined with the complex exponential of the noisy

phase. The “decision-directed” approach [1] introduced above was used in the proposed

estimators to compute the a priori SNR ξk, with α = 0.98. The a priori probability of

speech absence, qk, was set to qk = 0.3 in Eq. (4.5). qk could be estimated as a function

of frequency and time [47] but we empirically determined it for simplicity here.

Figures 5.1 and 5.2 show spectrograms of the signal in quiet, signal in speech-

shaped noise, signal enhanced by the GaussianMMSE estimator, signal enhanced by the

LapMMSE estimator and signal enhanced by the ApLapMMSE estimator. Similarly,

Figures 5.3 and 5.4 show spectrograms of the signal in quiet, signal in F-16 cockpit noise,

signal enhanced by the Gaussian MMSE estimator, signal enhanced by the LapMMSE

estimator and signal enhanced by the ApLapMMSE estimator. It is clear that the

proposed Laplacian-based estimators yielded less residual noise than the Gaussian-

based estimator, and enhanced speech produced by the LapMMSE and ApLapMMSE

estimators looked very similar.

Objective measures [55] were used to evaluate the performance of the pro-

posed estimators implemented with and without speech presence uncertainty (SPU)

and denoted as LapMMSE-SPU and LapMMSE respectively. Similarly, the approxi-

mate Laplacian estimators implemented with and without speech presence uncertainty

were indicated as ApLapMMSE-SPU and ApLapMMSE respectively. For compara-

tive purposes we evaluated the performance of the traditional (Gaussian-based) MMSE

estimator [1] with and without incorporating speech presence uncertainty which were

indicated as MMSE-SPU and MMSE respectively. We also evaluated the performance
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Figure 5.1. Spectrograms of a TIMIT sentence spoken by a female speaker and enhanced
by the Gaussian and Laplacian MMSE estimators. From top to bottom, are the spec-
trograms of the signal in quiet, signal in speech-shaped noise, signal enhanced by the
Gaussian MMSE estimator [1], signal enhanced by the LapMMSE estimator and signal
enhanced by the ApLapMMSE estimator. All estimators incorporated signal-presence
uncertainty.
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Figure 5.2. Spectrograms of a TIMIT sentence spoken by a male speaker and enhanced
by the Gaussian and Laplacian MMSE estimators. From top to bottom, are the spec-
trograms of the signal in quiet, signal in speech-shaped noise, signal enhanced by the
Gaussian MMSE estimator [1], signal enhanced by the LapMMSE estimator and signal
enhanced by the ApLapMMSE estimator. All estimators incorporated signal-presence
uncertainty.
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Figure 5.3. Spectrograms of a TIMIT sentence spoken by a female speaker and en-
hanced by the Gaussian and Laplacian MMSE estimators. From top to bottom, are
the spectrograms of the signal in quiet, signal in F-16 noise, signal enhanced by the
Gaussian MMSE estimator [1], signal enhanced by the LapMMSE estimator and signal
enhanced by the ApLapMMSE estimator. All estimators incorporated signal-presence
uncertainty.
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Figure 5.4. Spectrograms of a TIMIT sentence spoken by a male speaker and en-
hanced by the Gaussian and Laplacian MMSE estimators. From top to bottom, are
the spectrograms of the signal in quiet, signal in F-16 noise, signal enhanced by the
Gaussian MMSE estimator [1], signal enhanced by the LapMMSE estimator and signal
enhanced by the ApLapMMSE estimator. All estimators incorporated signal-presence
uncertainty.
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of the complex-valued MMSE estimator derived in [35] based on Laplacian speech pri-

ors. Note that in [35], the estimator E[X(ωk)|Y (ωk)] was derived by combining the

estimators of the real and imaginary parts of the DFT coefficients.

The segmental SNR, log likelihood ratio and PESQ (ITU-T P.862) [56] [57]

measures were used for objective evaluation of the proposed estimators. The segmental

SNR was computed as (Appendix D):

SNRseg =
10

M

M−1X
k=0

log10

PNk+N−1
n=Nk x2(n)PNk+N−1

n=Nk (x(n)− bx(n))2 (5.8)

where M is the total number of frames, N is the frame size, x(n) is the clean signal

and bx(n) is the enhanced signal. Since the segmental SNR can become very small and
negative during periods of silence, we limited the SNRseg values to the range of [-10

dB, 35 dB] as per [58]. In doing so, we avoided the explicit marking and identification

of speech-absent segments.

The log likelihood ratio (LLR) [59] for each 20-ms frame was computed as (Ap-

pendix D) :

LLR = log

µ
aTdRxad
aTxRxax

¶
(5.9)

where ax and ad are the prediction coefficients of the clean and enhanced signals re-

spectively, and Rx is the autocorrelation matrix of the clean signal. The mean LLR

value was computed across all frames for each sentence. Since the mean can be easily

biased by a few outlier frames, we computed the mean based on the lowest 95% of the

frames as per [58].
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Enhanced speech was also evaluated using the PESQ algorithm [56]. The PESQ

algorithm is designed to predict subjective opinion scores of degraded speech samples.

PESQ returns a score from 4.5 to -0.5, with higher scores indicating better quality.

Tables 5.1 and 5.2 list the segmental SNR values and log-likelihood ratio values

obtained by the various estimators at different SNRs, and Table 5.3 lists the PESQ

values. As can be seen, higher segmental SNR values and higher PESQ values were

obtained consistently by the proposed estimators (LapMMSE and ApLapMMSE). Par-

ticularly large improvements were noted at higher SNR levels (5 and 10 dB). The seg-

mental SNR values obtained by the proposed Laplacian-based MMSE estimators were

3-5 dB higher than the segmental SNR values obtained by the Gaussian-based MMSE

estimator and 2-3 dB higher than the segmental SNR obtained by the Laplacian es-

timator proposed in [35]. The Laplacian estimator proposed in [35] also performed

better than the Gaussian MMSE estimator. The difference in performance between

the LapMMSE and ApLapMMSE estimators was extremely small, suggesting that our

assumptions about the independence of magnitude and phase were reasonable and did

not cause any significant performance degradation.

The pattern of results was similar with the log-likelihood ratio objective measure

(Table 5.2). Smaller LLR values were obtained by the proposed Laplacian estimators

compared to the Gaussian-based MMSE estimator for all SNR conditions. This was

consistent with the segmental SNR objective evaluation (Table 5.1).

Informal listening tests indicated that speech enhanced by the Laplacian MMSE

estimators had less residual noise. This was confirmed by visual inspection of spec-
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trograms of the enhanced speech signals. Figure 5.1 shows the spectrograms of the

TIMIT sentence “The kid has no manners, boys” enhanced by the LapMMSE-SPU,

ApLapMMSE-SPU and MMSE-SPU estimators. Similarly, Figure 5.2 shows the same

results from the TIMIT sentence "Should giraffes be kept in small zoos?". The sen-

tence was originally embedded in +5 dB S/N speech-shaped noise. As can be seen,

the sentence enhanced by the Laplacian MMSE estimators had less residual noise with

no compromise in speech distortion. The quality of speech enhanced by the ApLap-

MMSE and LapMMSE estimators was nearly identical, consistent with the objective

evaluation of these estimators (Tables 5.1-5.3). The data in Tables 5.1-5.3 are also

plotted in Figures 5.5-5.7. Note that only results for the ApLapMMSE estimator are

plotted in those figures for better clarity since the performance of the LapMMSE and

ApLapMMSE was similar.

We plotted the spectrograms of the same sentences corrupted by F-16 noise for

comparative purposes in Figures 5.3 and 5.4. As expected, the enhanced results in

F-16 noise are better than those in speech-shaped noise probably due to the spectral

similarity of the spectrum of the speech-shaped noise with the speech spectrum. The

proposed LapMMSE estimator produced less residual noise than the Gaussian MMSE

estimator although the difference is less obvious compared to the speech-shaped noise.
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Estimator Speech-Shaped F-16 Fighter
0dB 5dB 10dB 0dB 5dB 10dB

MMSE 0.763 1.96 2.979 1.414 2.285 3.048
LapMMSE 1.202 4.414 7.301 1.915 5.159 7.533
ApLapMMSE 1.149 4.647 7.182 1.819 5.122 7.528
MMSE-Lap [35] 1.773 2.652 3.594 2.963 4.414 6.348
MMSE-SPU 0.859 2.027 3.067 1.495 2.362 3.125

LapMMSE-SPU 1.606 4.931 7.561 2.775 5.804 8.356
ApLapMMSE-SPU 1.867 5.113 7.792 2.650 5.657 8.198

Table 5.1. Comparative performance, in terms of segmental SNR, of the Gaussian-based
MMSE and Laplacian-based MMSE estimators.

Estimator Speech-Shaped F-16 Fighter
0dB 5dB 10dB 0dB 5dB 10dB

MMSE 1.433 1.11 0.852 1.094 0.86 0.676
LapMMSE 0.789 0.615 0.589 0.602 0.477 0.467
ApLapMMSE 0.783 0.618 0.603 0.598 0.479 0.479
MMSE-Lap [35] 1.017 0.772 0.610 0.870 0.693 0.554
MMSE-SPU 1.113 0.754 0.625 0.85 0.584 0.496

LapMMSE-SPU 0.756 0.598 0.584 0.577 0.464 0.463
ApLapMMSE-SPU 0.763 0.602 0.591 0.582 0.467 0.469

Table 5.2. Comparative performance, in terms of log-likelihood ratio, of the Gaussian-
based MMSE and Laplacian-based MMSE estimators.
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Estimator Speech-Shaped F-16 Fighter
0dB 5dB 10dB 0dB 5dB 10dB

MMSE 1.874 2.21 2.544 2.056 2.345 2.686
LapMMSE 1.882 2.448 2.783 2.19 2.587 2.914
ApLapMMSE 1.995 2.404 2.79 2.11 2.543 2.917
MMSE-Lap [35] 2.013 2.46 2.512 2.154 2.361 2.510
MMSE-SPU 1.952 2.315 2.634 2.03 2.346 2.70

LapMMSE-SPU 2.095 2.47 2.82 2.151 2.561 2.948
ApLapMMSE-SPU 1.997 2.439 2.81 2.146 2.563 2.943

Table 5.3. Comparative performance, in terms of PESQ, of the Gaussian-based MMSE
and Laplacian-based MMSE estimators.



CHAPTER 6

SUMMARY AND CONCLUSIONS

An MMSE estimator was derived for the speech magnitude spectrum based on a Lapla-

cian model for the speech DFT coefficients and a Gaussian model for the noise DFT

coefficients. An estimator was also derived under speech presence uncertainty and a

Laplacian model assumption. Results, in terms of objective measures, indicated that

the proposed Laplacian MMSE estimators yielded better performance than the tradi-

tional MMSE estimator, which was based on a Gaussian model [1]. Overall, the present

study demonstrated that the assumed distribution of the DFT coefficients could have

a significant effect on speech quality.

Our main contributions are as follows:

1. The pdf of Z =
√
X2 + Y 2, where X and Y follow a Laplacian pdf, was derived

in closed form. The pdf was used in the derivation of the MMSE estimator based

on Laplacian modeling of the speech DFT coefficients.

2. Much effort has been made to derive an MMSE estimator of the magnitude spec-

trum based on super-Gaussian priors. To our knowledge, no MMSE estimators

of the magnitude spectrum based on Lalacian modeling has been derived. In this

dissertation, we derive the optimal magnitude estimator of the speech spectrum

63
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assuming a Laplacian distribution of the speech DFT coefficients and a Gaussian

pdf for the noise DFT coefficients.

3. To further improve the quality of the enhanced speech, a Speech Presence Uncer-

tainty (SPU) estimator based on Laplacian modeling is also proposed and derived.

After the magnitude is estimated by the method proposed above, the SPU es-

timator refines the estimates of the magnitudes by scaling them with the SPU

probability.

Future work can be pursued in the following directions:

1. Simplification of the pdf of spectral magnitude (Eq. (3.6)). The proposed MMSE

magnitude estimator involves high computational complexity and potential nu-

merical instability and needs to be handled carefully. If a simpler function is used

to approximate the magnitude pdf (Eq. (3.6)) the high computational complex-

ity and numerical instability issues may be circumvented. Also, better numerical

computation techniques such as those in [60] [37] can be used.

2. Non-stationary noise. The proposed algorithms did not directly address non-

stationary noise, and this is a very important issue for single channel speech

enhancement. Noise estimation algorithms [61] [62] [63] can be incorporated in

the proposed algorithms.
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3. In this thesis, only Laplacian modeling of the speech DFT components was con-

sidered. Gamma modeling of the speech DFT coefficients is also encouraged.
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APPENDIX A

DERIVATION OF PDF OF SPECTRAL AMPLITUDE WITH COMPLEX
LAPLACIAN DISTRIBUTED DFT COEFFICIENTS

This appendix details the derivation of the pdf of the random variable Z =
p
X2

R +X2
I ,

whereXR,XI are the real and imaginary parts respectively of DFT coefficients, assumed

to have a Laplacian probability density function of the form:

pXr(xr) =
1

2σ
exp

µ
− |xr|

σ

¶
(A.1)

where σ is the standard deviation. Let YR = X2
R and YI = X2

I . Then, we know [45]

that pY1(y1) =
1√
y1
px1(
√
y1) and so:

pY1(y1) =
1
√
y1

1

2σ
exp

µ
−
√
y1

σ

¶
, pY2(y2) =

1
√
y2

1

2σ
exp

µ
−
√
y2

σ

¶
(A.2)

If we let Z = X2
R+X2

I = YR+YI (YR > 0, YI > 0), we know pZ(z) = pYR(yR)∗pYI (yI),

where ∗ indicates convolution. Thus,

pZ(z) =

Z ∞

−∞
pYR(z − yI)pYI (yI)dyI (A.3)

=

Z z

0+

1

2σ
√
z − yR

exp(−
√
z − yI
σ

)
1

2σ
√
yI
exp(−

√
yI

σ
)dyI

=
1

4σ2

Z z

0+

1p
yI(z − yI)

exp(−
√
z − yI +

√
yI

σ
)dyI

Let yI = z sin2 t

67
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pZ(z) =

Z π/2

0+

2z sin t cos tp
z2 sin2 t(1− sin2 t)

exp(−
√
z(cos t+ sin t)

σ
)dt (A.4)

=
1

2σ2

Z π/2

0

exp(−
√
2z cos(t− π/4)

σ
)dt

If we let X =
√
Z, we have pX(x) = 2xpZ(x

2)u(x), where u(x) is the step function.

Substituting θ = t− π/4 in the above equation, we get:

pX(x) =
x

σ2

Z π/2

0

exp(−
√
2x cos(t− π/4)

σ
)dt (A.5)

=
x

σ2

Z π/4

−π/4
exp(−

√
2x cos θ

σ
)dθ

=
2x

σ2

Z π/4

0

exp(−
√
2x cos θ

σ
)dθ

=
2x

σ2

Z π/4

0

exp(Ax cos θ)dθ x ≥ 0

where A = −
√
2/σ.

We tried to solve the above integral by expressing the exponential as an infinite

series and then integrating term by term. We made use of the following generating

function:

exp

∙
x

2
(t+

1

t
)

¸
= ext/2ex/2t (A.6)

=

Ã ∞X
m=0

1

m!

xmtm

2m

!Ã ∞X
n=0

1

n!

xnt−n

2n

!

For the above equation, we need to focus on the terms containing tk (k ≥ 0). When

they are multiplied together, a term containing tn is obtained if the terms containing

t−n are multiplied by the terms in the first series containing tn+j, that is, the terms for
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which m = k + n. Therefore, taking into account all possible values of j, we find that

the coefficient of tn in the product of the two series is:

∞X
n=0

∙
1

(k + n)!

xk+n

2k+n

¸ ∙
1

n!

xn

2n

¸
=

∞X
n=0

xk+2n

2k+2nn!Γ(k + n+ 1)
= Ik(x) (A.7)

where Ik(x) is the modified Bessel function of kth order. Similarly, for the terms

containing t−k, we get

∞X
m=0

∙
1

m!

xm

2m

¸ ∙
1

(k +m)!

xk+m

2k+m

¸
=

∞X
n=0

xk+2n

2k+2nn!Γ(k + n+ 1)
= Ik(x) (A.8)

Hence, summing all values of k, we get:

exp

∙
x

2
(t+

1

t
)

¸
= I0(x) +

∞X
k=1

Ik(x)[t
k + t−k] (A.9)

Let t = e−iθ, so that the left side of the above equation becomes:

exp

∙
x

2
(t+

1

t
)

¸
= exp

hx
2
(e−iθ + eiθ)

i
= exp(x cos θ) (A.10)

and the right side becomes:

tk + t−k = e−ikθ + eikθ = 2 cos kθ (A.11)

I0(x) +
∞X
k=1

Ik(x)[t
k + t−k] (A.12)

= I0(x) + 2
∞X
k=1

Ik(x) cos kθ

Hence,

exp(x cos θ) = I0(x) + 2
∞X
k=1

Ik(x) cos kθ (A.13)
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Let x = Ax, so that

pX(x) =
2x

σ2

Z π/4

0

exp(Ax cos θ)dθ

=
2x

σ2

Z π/4

0

Ã
I0(Ax) + 2

∞X
k=1

Ik(Ax) cos kθ

!
dθ

=
2x

σ2

Ã
π

4
I0(Ax) + 2

∞X
k=1

Ik(Ax)

Z π/4

0

cos kθdθ

!

=
2x

σ2

Ã
π

4
I0(Ax) + 2

∞X
k=1

1

k
Ik(Ax) sin

πn

4

!

Substituting A = −
√
2
σ
, we have

pX(x) =
2x

σ2

"
π

4
I0

Ã
−
√
2

σ
x

!
+ 2

∞X
k=1

1

k
Ik

Ã
−
√
2

σ
x

!
sin

πk

4

#
(A.14)

If we let σ2 = λ and A = −
p
2/λ, then pX(x) becomes

pX(x) =
πx

2λ
I0

Ã
−
√
2√
λ
x

!
+
4x

λ

∞X
n=1

1

n
In

Ã
−
√
2√
λ
x

!
sin

πn

4
, x > 0 (A.15)

Eq. (A.15) is the closed form solution of pdf of the magnitude desired.
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DERIVATION OF APPROXIMATE LAPLACIAN MMSE ESTIMATOR

The MMSE amplitude estimator X̂k can be expressed as

X̂k = E{Xk|Y (ωk)} (B.1)

=

R∞
0

R 2π
0

xkp(Y (ωk)|xk, θk)p(xk, θk)dθkdxkR∞
0

R 2π
0

p(Y (ωk)|xk, θk)p(xk, θk)dθkdxk

where

p(Y (ωk)|xk, θk) =
1

πλd(k)
exp

½
− 1

λd(k)

¯̄
Yk −Xke

jθx(k)
¯̄2¾

Since p(xk, θk) ≈ 1
2π
pX(xk), we substitute Eq. (A.15) into Eq. (B.1) and then have

X̂k =

R∞
0

R 2π
0

x2k exp
h
−Y 2k −2xkRe{e−jθxY (ωk)}+X2

k

λd(k)

i
Φ(xk)dθxdxkR∞

0

R 2π
0

xk exp
h
−Y 2k −2xkRe{e−jθxY (ωk)}+X2

k

λd(k)

i
Φ(xk)dθxdxk

(B.2)

=

R∞
0

x2k exp
³
− X2

k

λd(k)

´
Φ(xk)

R 2π
0
exp

³
2xkRe{e−jθxY (ωk)}

λd(k)

´
dθxdxkR∞

0
xk exp

³
− X2

k

λd(k)

´
Φ(xk)

R 2π
0
exp

³
2xkRe{e−jθxY (ωk)}

λd(k)

´
dθxdxk

=

R∞
0

x2k exp
³
− X2

k

λd(k)

´
I0

µ
−

√
2√

λx(k)
xk

¶
I0(2xkYk/λd(k)) + Σ(xk)dxkR∞

0
xk exp

³
− X2

k

λd(k)

´
I0

µ
−

√
2√

λx(k)
xk

¶
I0(2xkYk/λd(k)) + Σ(xk)dxk

where

Φ(xk) =

"
I0(−

√
2p

λx(k)
xk) +

8

π

∞X
n=1

1

n
In(−

√
2p

λx(k)
xk) sin

πn

4

#
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Σ(xk) =
8

π

∞X
n=1

1

n
sin

πn

4

Z ∞

0

x2k exp

µ
− X2

k

λd(k)

¶
In

Ã
−
√
2p

λx(k)
xk

!
I0(2xkYk/λd(k))

According to Eq. 6.633.1 in [39],Z ∞

0

xλ+1e−ax
2

Jμ(β̂x)Jν(γ̂x)dx =
β̂μγ̂να−

μ+ν+λ+2
2

2μ+ν+1Γ(ν + 1)

×
∞X

m=0

Γ(m+ 1
2
ν + 1

2
μ+ 1

2
λ+ 1)

m!Γ(m+ μ+ 1)

Ã
− β̂2

4α

!m

×F (−m,−μ−m; ν + 1;
γ̂2

β̂2
)h

Re(α) > 0, Re(μ+ ν + λ) > −2, β̂ > 0, γ̂ > 0
i

Let β̂ = jβ and γ̂ = jγ, then the above equation becomes:Z ∞

0

xλ+1e−ax
2

Jμ(jβx)Jν(jγx)dx =
jμ+νβμγνα−

μ+ν+λ+2
2

2μ+ν+1Γ(ν + 1)

×
∞X

m=0

Γ(m+ 1
2
ν + 1

2
μ+ 1

2
λ+ 1)

m!Γ(m+ μ+ 1)

µ
β2

4α

¶m

×F (−m,−μ−m; ν + 1;
γ2

β2
)

Converting Jn(x) to In(x) using jnIn(x) = Jn(jx), we get:Z ∞

0

xλ+1e−ax
2

Iμ(βx)Iν(γx)dx =
βμγνα−

μ+ν+λ+2
2

2μ+ν+1Γ(ν + 1)
(B.3)

×
∞X

m=0

Γ(m+ 1
2
ν + 1

2
μ+ 1

2
λ+ 1)

m!Γ(m+ μ+ 1)

µ
β2

4α

¶m

×F
µ
−m,−μ−m; ν + 1;

γ2

β2

¶
We can use the above integral to evaluate Eq. (B.2) with the following arguments:

λ = 1 or 0; a = 1
λd(k)

; β = −
√
2√

λx(k)
; γ = 2Yk

λd(k)
; μ = 0; ν = n (0, 1, 2, 3, ...∞).

Let us denote the numerator terms of Eq. (B.2) as Ak and Bk, respectively, i.e.,

Ak =

Z ∞

0

x2k exp

µ
− X2

k

λd(k)

¶
I0

Ã
−
√
2p

λx(k)
xk

!
I0(2xkYk/λd(k))dxk
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and

Bk =
8

π

∞X
n=1

1

n
sin

πn

4

Z ∞

0

x2k exp

µ
− X2

k

λd(k)

¶
In

Ã
−
√
2p

λx(k)
xk

!
I0(2xkYk/λd(k))dx

and the denominator terms of Eq. (B.2) as Ck and Dk:

Ck =

Z ∞

0

xk exp

µ
− X2

k

λd(k)

¶
I0

Ã
−
√
2p

λx(k)
xk

!
I0(2xkYk/λd(k))dxk

and

Dk =
8

π

∞X
n=1

1

n
sin

πn

4

Z ∞

0

xk exp

µ
− X2

k

λd(k)

¶
In

Ã
−
√
2p

λx(k)
xk

!
I0(2xkYk/λd(k))dx

Applying Eq. (B.3), we can evaluate the integrals of Ak, Bk, Ck, and Dk:

Ak =
λd(k)

3
2

2

∞X
m=0

Γ(m+ 3
2
)

m!Γ(m+ 1)

µ
λd(k)

2λx(k)

¶m

F

µ
−m,−m; 1; 2λx(k)

λ2d(k)
Y 2
k

¶
(B.4a)

Bk =
8

π

∞X
n=1

1

n
sin

πn

4

³
2Yk
λd(k)

´n ³
1

λd(k)

´−n+3
2

2n+1Γ(n+ 1)

∞X
m=0

Γ(m+ 1
2
n+ 3

2
)

m!Γ(m+ 1)

µ
− λd(k)

2λx(k)

¶m

(B.4b)

·F
µ
−m,−m;n+ 1; 2λx(k)

λ2d(k)
Y 2
k

¶

Ck =
λd(k)

2

∞X
m=0

1

m!

µ
λd(k)

2λx(k)

¶m

F

µ
−m,−m; 1; 2λx(k)

λ2d(k)
Y 2
k

¶
(B.4c)

Dk =
8

π

∞X
n=1

1

n
sin

πn

4

³
2Yk
λd(k)

´n ³
1

λd(k)

´−n
2
−1

2n+1Γ(n+ 1)

∞X
m=0

Γ(m+ 1
2
n+ 1)

m!Γ(m+ 1)

µ
λd(k)

2λx(k)

¶m

(B.4d)

·F
µ
−m,−m;n+ 1; 2λx(k)

λ2d(k)
Y 2
k

¶
where Γ(.) is the gamma function and F (a, b, c;x) is the Gaussian hypergeometric

function (Eq. (9.100) in [39]), which can be calculated using [60]. The above terms are
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given as a function of the signal and noise variances, but can also be expressed in terms

of the a priori SNR ξk (ξk = λx(k)/λd(k)) and a posteriori SNR γk (γk = Y 2
k /λd(k))

using the following relationships:

1

λd(k)
=

γk
Y 2
k

(B.5)

1

λx(k)
=

γk
ξk Y 2

k

(B.6)

Thus, we derive the MMSE estimator in closed form:

X̂k =
Ak +Bk

Ck +Dk
(B.7a)

where

Ak =

³
Y 2k
γk

´ 3
2

2

∞X
m=0

Γ(m+ 3
2
)

m!Γ(m+ 1)

µ
γk

2ξ2kY
2
k

¶m

· F
¡
−m,−m; 1; 2ξ2kY 2

k

¢
(B.7b)

Bk =
8

π

∞X
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1

n
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πn

4

³
2γk
Yk

´n ³
γk
Y 2k

´−n+3
2

2n+1Γ(n+ 1)
·
∞X
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Γ(m+ 1
2
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2
)
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µ
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2ξ2kY
2
k

¶m

(B.7c)

·F
¡
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k
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Ck =
Y 2
k

2γk

∞X
m=0

1

m!

µ
γk

2ξ2kY
2
k

¶m

· F
¡
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(B.7d)

Dk =
8

π

∞X
n=1

1

n
sin

πn

4

³
2γk
Yk

´n ³
γk
Y 2k

´−n
2
−1

2n+1Γ(n+ 1)
·
∞X

m=0

Γ(m+ 1
2
n+ 1)

m!Γ(m+ 1)

µ
γk

2ξ2kY
2
k
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(B.7e)

·F
¡
−m,−m;n+ 1; 2ξ2kY 2

k

¢
Equation (B.7a) gives the approximate Laplacian MMSE estimator of the spec-

tral magnitudes. We will be referring to this estimator as the ApLapMMSE estimator.



APPENDIX C

DERIVATION OF THE CONDITIONAL DENSITY P (Y (ωK)|HK
1 )

In this appendix, we compute p(Y (ωk)|Hk
1 ), where Y (ωk) = X(ωk) +D(ωk), assuming

that the complex DFT coefficients ofX(ωk) andD(ωk) follow a Laplacian and Gaussian

distribution, respectively. Assuming independence between real and imaginary compo-

nents, we have:

p(Y (ωk)|Hk
1 ) = p(zr, zi) = pZr(k)(zr)pZi(k)(zi) (C.8)

where Zr(k) = Re{Y (ωk)}, and Zi(k) = Im{Y (ωk)}.

Let Zr = Xr +Dr and Zi = Xi +Di, then Y = Zr + jZi. The pdf of Zr can be

computed by the convolution of the Laplacian and Gaussian densities, and is given by:

pZr(zr) =

Z ∞

−∞
pXr(zr − dr)pDr(dr)ddr

=

Z zr

−∞

1

2σxσd
√
π
exp

µ
−σxd

2
r − σ2ddr + σ2dzr

σxσ2d

¶
ddr +Z ∞

zr

1

2σxσd
√
π
exp

µ
−σxd

2
r + σ2ddr − σ2dzr

σxσ2d

¶
ddr (C.9)

After using Eq. 2.338.1 in [39], we get:

pZr(zr) =
exp(

σ2d
σ2x
)

2
√
2σx

[exp(− zr
σx
) + exp(

zr
σx
) + exp(− zr

σx
)erf(

zr
σx
− σd

σx
) (C.10)

− exp( zr
σx
)erf(

zr
σx
+

σd
σx
)]
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where erf(·) is the error function [44]. Finally, after expressing the above equation in

terms of ξk and γk using the a priori SNR ξk (ξk = λx(k)/λd(k)) and a posteriori SNR

γk (γk = Y 2
k /λd(k)), we get:

pZr(k)(zr) =

√
γk exp(

1
2ξk
)

2
√
2ξkYk

∙
exp(−

√
γkzr

Yk
√
ξk
) + exp(

√
γkzr√
ξkYk

)+ (C.11)

exp(−
√
γkzr√
ξkYk

)erf(

√
γkzr√
ξkYk

− 1√
ξk
)− exp(

√
γkzr√
ξkYk

)erf(

√
γkzr√
ξkYk

+
1√
ξk
)

¸
Similarly, the probability density for the imaginary part, i.e., pZi(zi)̇, can be derived as

follows:

pzi(zi) =

Z ∞

−∞
pXr(zi − dr)pDr(dr)ddr (C.12)

=

Z zi

−∞

1

2σxσd
√
π
exp

µ
−σxd

2
r − σ2ddr + σ2dzi

σxσ2d

¶
ddr +Z ∞

zi

1

2σxσd
√
π
exp

µ
−σxd

2
r + σ2ddr − σ2dzi

σxσ2d

¶
ddr

pzi(zi) =
exp(

σ2d
σ2x
)

2
√
2σx

[exp(− zi
σx
) + exp(

zi
σx
) + exp(− zi

σx
)erf(

zi
σx
− σd

σx
) (C.13)

− exp( zi
σx
)erf(

zi
σx
+

σd
σx
)]

Expressing the above equation in terms of ξk and γk, we get the following expression

for the conditional density p(Y (ωk)|Hk
1 ) at frequency bin ωk:

pzi(k)(zi) =

√
γk exp(

1
2ξk
)

2
√
2ξkYk

∙
exp(−

√
γkzi

Yk
√
ξk
) + exp(

√
γkzi√
ξkYk

)+ (C.14)

exp(−
√
γkzi√
ξkYk

)erf(

√
γkzi√
ξkYk

− 1√
ξk
)− exp(

√
γkzi√
ξkYk

)erf(

√
γkzi√
ξkYk

+
1√
ξk
)

¸
Substituting Eq. (C.11) and Eq. (C.14) to Eq. (4.7), we get p(Y (ωk)|Hk

1 ).



APPENDIX D

NUMERICAL INTEGRATION TECHNIQUES BASED ON THE FINITE
ELEMENT METHOD

Suppose we want to integrate a function f(x) on [a, b], which can be expressed as

f(x) =
MX
m=0

f(xm)Vm(x) (D.1)

where Vm(x) is defined as follows:

1.

V0(x) =

½
x0−x
d
for x0 < x < d+ x0

0 Otherwise

2.

Vm(x) =

⎧⎨⎩
x−xm−1

d
for xm−1 < x 6 xm

x−xm+1
−d for xm 6 x < xm+1
0 Otherwise

3.

VM(x) =

½ x−xM−1
d

for xM−1 < x 6 xM
0 Otherwise

where d = b−a
M
.

Integrating f(x) we get:

bZ
a

f(x)dx =
MX

m=0

f(xm)

bZ
a

Vm(x)dx =
d

2
f(x0) +

d

2
f(xM) + d

M−1X
m=1

f(xm) (D.2)
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For double integrals of the type
DR
C

g(x)dx
bR
a

f(x, θ)dθ, we can define:

F (x) =

bZ
a

f(x, θ)dθ =

bZ
a

MX
m=0

f(x, θm)Vm(θ)dθ (D.3)

=
d

2
[f(x, a) + f(x, b)] + d

MX
m=0

f(x, θm)

where θm = a+md and d = b−a
M
.

Next, let us choose an appropriate computation resolutionM (trade-off between

accuracy and computation load): ∆ = D−C
M
, xm = C +4m. Then, we have

g(x) =
MX
m=0

g(xm)Vm(x)

F (x) =
MX
m=0

F (xm)Vm(x)

DZ
C

g(x)F (x)dx =
MX

m=0

MX
l=0

g(xm)F (xl)

DZ
C

Vl(x)Vm(x)dx (D.4)

Note that
DR
C

Vl(x)Vm(x)dx = 0 if l 6= m orm−l 6= 1, and the above integral is expressed

as:
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DZ
C

g(x)F (x)dx = g(x0)F (x0)

DZ
C

v0(x)v0(x)dx+ g(x0)F (x1)

DZ
C

v0(x)v1(x)dx (D.5)

+
M−1X
l=1

⎡⎣g(xl)F (xl) DZ
C

vl(x)vl(x)dx+ g(xl)F (xl−1)

DZ
C

vl(x)vl−1(x)dx

+g(xl+1)F (xl)

DZ
C

vl+1(x)vl(x)dx

⎤⎦+ g(xM)F (xM)

DZ
C

v2M(x)dx

+g(xM−1)F (xM)

DZ
C

vM(x)vM−1(x)dx

= g(x0)F (x0)

DZ
C

v0(x)v0(x)dx+ g(x0)F (x1)

DZ
C

v0(x)v1(x)dx

+
M−1X
l=1

⎡⎣g(xl)F (xl) DZ
C

vl(x)vl(x)dx+ g(xl+1)F (xl)

DZ
C

vl+1(x)vl(x)dx

⎤⎦
+g(xM)F (xM)

DZ
C

v2M(x)dx

The above three integrals evaluate to:

DZ
C

v0(x)v0(x)dx =
∆

3

DZ
C

vm(x)vm(x)dx =
2∆

3

DZ
C

vm(x)vm+1(x)dx =
∆

6
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Substituting the above three results into Eq. (D.5), we obtain the desired nu-

merical integration formula:

DZ
C

g(x)F (x)dx (D.6)

=
∆

3
g(x0)F (x0) +

∆

6
g(x0)F (x1) +

∆

3
g(xM)F (xM) +

∆

6
g(xM−1)F (xM)

+
M−1X
l=1

∙
2∆

3
g(xl)F (xl) +

2∆

3
g(xl+1)F (xl) +

∆

6
g(xl)F (xl−1)

¸



APPENDIX E

OBJECTIVE PERFORMANCE MEASURES

In this appendix, we describe the objective measures [52] used in this dissertation.

E.1 SNR

The SNR, or global SNR, is the most often used measure because it is simple to compute.

Let y(n), x(n), and d(n) denote the noisy speech signal, clean speech signal and noise

signal, respectively, and x̂(n) the corresponding enhanced signal. The error signal ε(n)

can be written as

ε(n) = x(n)− x̂(n) (E.1)

The error signal energy can be computed as:

Eε =
X
n

ε2(n) =
X
n

[x(n)− x̂(n)]2 (E.2)

and the signal energy as:

Ex =
X
n

x2(n) (E.3)

The resulting SNR measure (in dB) is obtained as

SNR = 10 log10
Ex

Eε
= 10 log10

P
n x

2(n)P
n[x(n)− x̂(n)]2

(E.4)
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E.2 Segmental SNR

The segmental SNR (SNRseg) measure is a variation of SNR, and is formulated as

follows

SNRseg =
1

M

M−1X
j=0

10 log10

" Pmj

n=mj−N+1 x
2(n)Pmj

n=mj−N+1[x(n)− x̂(n)]2

#
(E.5)

where m0,m1, · · · ,mM−1 are the end-times for the M frames, each of which is length

N . For each frame, a SNR is computed and the final measure is obtained by averaging

these measures over all segments of the waveform.

The main problem with the segmental SNR is that for some frames, the SNR

value is unrealistically high or low, and that might severely bias the segmental SNR.

To address this issue, two approaches can be taken, one is to set those unrealistically

high or low SNR values to a high threshold (say 35dB) or a low threshold (say -10dB)

respectively. The other approach is to totally abandon those unrealistically high or low

SNR values. In this dissertation, we took the first approach.

E.3 LLR measure

The LLR (Log Likelihood Ratio) measure is a similarity measure based on Linear

Prediction (LP) coefficients and is similar to the Itakura-Saito distance measure [64].

Specifically, for each frame m, we obtain the LP coefficients ax of the clean signal and

the LP coefficients ad of the enhanced signal. The LLS measure is defined to be:

LLR = log

µ
aTdRxad
aTxRxax

¶
(E.6)
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where ax and ad are the prediction coefficients of the clean and enhanced signals re-

spectively, and Rx is the autocorrelation matrix of the clean signal. The mean LLR

value was computed across all frames for each sentence.



APPENDIX F

MATLAB SOURCE CODE

F.1 Implementation of the MMSE Magnitude Estimator

The following code shows the major routine that implements the MMSE magnitude

estimator in Eq. (3.9a). It calls three other functions listed in the following sections.

================================================

function [xhat]=MagEstimator(ksi,gammak,Yk,infi)

%usage: ksi: a priori SNR; gammak: a posterior SNR:

%Yk: vector of DFT coefficients of noisy spectrum

%infi: a value used to approximate infinity (here infi=40)

Yk2=Yk.*Yk;

L=length(ksi)/2+1;

d=infi/200;

x=[0:d:infi];

for j=1:L

% Calculate pdf of the modulos Z =
√
X2 + Y 2
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fn1=pdf(-1.414*gammak(j)/ksi(j)/Yk2(j),x);

fn2=(x.^2).*exp((-gammak(j)/Yk2(j))*...

...x.^2).*besseli(0,(2*gammak(j)/Yk(j))*x);

fn3=x.*exp((-gammak(j)/Yk2(j))*x.^2).*...

...besseli(0,(2*gammak(j)/Yk(j))*x);

fn2(find(isnan(fn2)==1))=eps; %workaround for the case that inf*infsmall

fn3(find(isnan(fn3)==1))=eps; %it’s set to a very small value because

% infsmall is of higher order over inf.

A(j)=dblint(fn1,fn2,d); % Integration of multiplication of two functions

C(j)=dblint(fn1,fn3,d);

xhat(j,1)=A(j)/C(j); % Eq. (3.9a)

end

xhat = [xhat; flipud(xhat(2:L-1))];

================================================

F.2 Subroutine for Calculation of pdf of X =
p
X2

R +X2
I

The following code computes the pdf of X where X =
p
X2

R +X2
I in Eq. (3.6) assum-

ing X and Y follow a Laplacian distribution.
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================================================

function y=pdf(a,w)

% y = p(ω)

% a = −
√
2/σ where σ is the standard deviation of the signal.

% w is a vector containing the range of values to evaluate the pdf.

d=0.01;

inv=[0:d:pi/4];

N=length(inv);

dw=w(2)-w(1);

k=1;

for w=min(w):dw:max(w)

fun=exp(a*w*cos(inv));

y(k)=8*w*d*(sum(fun)-(fun(1)+fun(N))/2); %Eq. (3.6)

k=k+1;

end

================================================
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F.3 Subroutine for Numerical Integration of
R b
a
f(x)g(x)dx

The following code implements the numerical integration of
R b
a
f(x)g(x)dx, where fn1

and fn2 represent f(x) and g(x), respectively. It uses Eq. (5.1).

================================================

function y=dblint(fn1,fn2,d);

% Integration of product of two functions

N=length(fn1);

zero_zero=d*(fn1*fn2’)/3*2-d*(fn1(1)*fn2(1)+fn1(N)*fn2(N))/3;

zero_one=d*(fn1(1:N-1)*fn2(2:N)’)/6;

one_zero=d*(fn1(2:N)*fn2(1:N-1)’)/6; %Eq. (5.1)

y=zero_zero+zero_one+one_zero;

================================================

F.4 Subroutine for SPU Estimator

This code implements the SPU Estimator in Eq. (4.7) The posterior SNR is limited to

a maximum of 20dB to avoid numerical instability.

================================================

function p=spchdector(Yk,gammak,ksi,Ndelta)
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%usage: ksi: a priori SNR; gammak: a posterior SNR:

%Yk: vector of DFT coefficients of noisy spectrum

%Ndelta: Noise variance

Ykr=real(Yk);

Yki=imag(Yk);

Ykm=abs(Yk);

SNRr=sqrt(gammak./ksi);

commr=Ykr.*SNRr./Ykm;

commi=Yki.*SNRr./Ykm;

sqrt2=sqrt(2);

qk=0.3;

fnr=SNRr.*exp(0.5./ksi).*(exp(-commr).*(1+erf(commr-1./sqrt(ksi)))+...

exp(commr).*(1-erf(commr+1./sqrt(ksi))))./(2*sqrt2*Ykm); %Eq. (4.8)

fni=SNRr.*exp(0.5./ksi).*(exp(-commi).*(1+erf(commi-1./sqrt(ksi)))+...

exp(commi).*(1-erf(commi+1./sqrt(ksi))))./(2*sqrt2*Ykm); %Eq. (4.9)

% cap Posterior SNR below 20dB to avoid underflow in the next step

pSNR=min(100,(Ykm.^2)./Ndelta);

fns=exp(-pSNR)./(pi*Ndelta); %Eq. (4.8)
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A=(1/qk-1)*(fnr.*fni./fns);

p=A./(1+A);

p(find(isnan(p)==1))=1;

================================================
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