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Abstract

Most of the existing intelligibility measures do not account for the distortions present in processed speech, such as those introduced by
speech-enhancement algorithms. In the present study, we propose three new objective measures that can be used for prediction of intel-
ligibility of processed (e.g., via an enhancement algorithm) speech in noisy conditions. All three measures use a critical-band spectral
representation of the clean and noise-suppressed signals and are based on the measurement of the SNR loss incurred in each critical band
after the corrupted signal goes through a speech enhancement algorithm. The proposed measures are flexible in that they can provide
different weights to the two types of spectral distortions introduced by enhancement algorithms, namely spectral attenuation and spectral
amplification distortions. The proposed measures were evaluated with intelligibility scores obtained by normal-hearing listeners in 72
noisy conditions involving noise-suppressed speech (consonants and sentences) corrupted by four different maskers (car, babble, train
and street interferences). Highest correlation (r = �0.85) with sentence recognition scores was obtained using a variant of the SNR loss
measure that only included vowel/consonant transitions and weak consonant information. High correlation was maintained for all noise
types, with a maximum correlation (r = �0.88) achieved in street noise conditions.
� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

A number of measures have been proposed to predict
speech intelligibility in the presence of background noise.
Among these measures, the articulation index (AI) (French
and Steinberg, 1947; Fletcher and Galt, 1950; Kryter,
1962a; ANSI, 1997) and speech-transmission index (STI)
(Steeneken and Houtgast, 1980; Houtgast and Steeneken,
1985) are by far the most commonly used today for predict-
ing speech intelligibility in noisy conditions. The AI mea-
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sure was further refined to produce the speech
intelligibility index (SII) (ANSI, 1997). The SII measure
is based on the idea that the intelligibility of speech
depends on the proportion of spectral information that is
audible to the listener and is computed by dividing the
spectrum into 20 bands (contributing equally to intelligibil-
ity) and estimating the weighted (geometric) average of the
signal-to-noise ratios (SNRs) in each band (Kryter,
1962a,b; ANSI, 1997; Pavlovic, 1987; Allen, 1994). The
SNRs in each band are weighted by band-importance func-
tions which differ across speech materials (ANSI, 1997).
The SII measure has been shown to predict successfully
the effects of linear filtering and additive noise on speech
intelligibility. It has, however, a number of limitations.
For one, the computation of the SII measure requires as
input the levels of speech and masker signals at the ear-
drum of the listeners, something that might not be avail-
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able in situations wherein we only have access to recorded
(digitized) processed signals. Second, the SII measure has
been validated for the most part only for steady (station-
ary) masking noise since it is based on the long-term aver-
age spectra (computed over 125-ms intervals) of the speech
and masker signals. As such, it cannot be applied to situa-
tions in which speech is embedded in fluctuating maskers
(e.g., competing talkers). Several attempts have been made
to extend the SII measure to assess speech intelligibility in
fluctuating maskers (Rhebergen and Versfeld, 2005; Rhe-
bergen et al., 2006; Kates, 1987; Ma et al., 2009). Rheber-
gen et al. (2006), for instance, have proposed to divide the
speech and masker signals into short frames (9–20 ms),
evaluate the instantaneous AI value in each frame, and
average the computed AI values across all frames to pro-
duce a single AI metric. Other extensions to the SII index
were proposed in (Kates and Arehart, 2005; Kates, 1992)
for predicting the intelligibility of peak-clipping and cen-
ter-clipping distortions in the speech signal, such as those
found in hearing aids. Modifications to the AI and
speech-based STI indices to account for fluctuating masker
environments (e.g., train noise) were also proposed in (Ma
et al., 2009) based on the use of signal- and segment-depen-
dent band-importance functions.

With the exception of the coherence-based index (Kates,
1992) that assessed non-linear distortions, most of the exist-
ing intelligibility measures do not account for the distortions
present in processed speech, such as those introduced by
speech-enhancement algorithms. The majority of speech-
enhancement algorithms operate in the frequency domain
and are based on multiplication of the noisy speech magni-
tude spectrum by a suppression function, which is
designed/optimized based on certain error criteria (e.g.,
mean squared error). The multiplication of the suppression
function with the noisy magnitude spectra introduces two
types of distortions, spectral attenuation (i.e., enhanced
spectral components are smaller in magnitude than corre-
sponding clean spectral components) and/or spectral ampli-
fication (i.e., enhanced spectral components are larger in
magnitude than corresponding clean spectral component).
These two types of distortions coexist within and across con-
secutive time frames, leading in some cases to the well known
distortion of “musical noise” (Berouti et al., 1979; Loizou,
2007). The perceptual implications and impact on speech
intelligibility of these distortions are not clear, and most
objective measures (e.g., Itakura–Saito measure, Quacken-
bush et al., 1988) lump these two types of distortions into
one, as they are primarily based on the squared error crite-
rion (see discussion in Loizou and Kim, 2011). The only
notable measure that provides different weights to these
two distortions is the PESQ measure (ITU-T, 2000). Other
objective measures that attempted to balance the tradeoff
between the two distortions were proposed in (Paajanen
et al., 2000; Mattila, 2003), but did not yield high correlation
with subjective speech quality (Paajanen et al., 2000) (these
measures were not evaluated with speech intelligibility
scores). These measures were computed in the time-domain
and not in the frequency (critical-band) domain, as done
with the proposed measures.

In the present paper, we propose a new measure which
treats the two types of spectral distortion differently, thus
providing us with the possibility of assessing the individual
contribution of the two distortions on speech intelligibility.
It uses a critical-band spectral representation of the clean
and noise-suppressed signals and is based on the measure-
ment of the SNR loss incurred in each critical band after
the corrupted signal goes through a speech enhancement
algorithm. The proposed measure is flexible in that it can
provide different weights to the two types of spectral distor-
tions introduced by enhancement algorithms, and can also
limit the amount of distortion that should be accounted for
in its calculation. A second measure is also investigated
based on the normalized correlation between the clean
and enhanced critical-band spectra. This measure was cho-
sen as it can detect inconsistencies in the two types of dis-
tortions introduced in the spectrum. It is based on the
hypothesis is that if the enhanced spectra are uniformly
attenuated or amplified across all bands, then intelligibility
should not suffer as the overall spectral envelope is pre-
served. Consequently, the correlation coefficient will be
high since the clean and enhanced spectra will be linearly
related. On the other hand, when both spectral attenuation
and amplification distortions are present (as is often the
case), the impact on intelligibility ought to be higher and
subsequently the correlation coefficient will be lower. A
measure that combines the attractive features of the SNR
loss and normalized correlation measures is also proposed.

The proposed measures are evaluated using a total of 72
noisy conditions. The 72 conditions included distortions
introduced by 8 different noise-suppression algorithms
and noise-corrupted (i.e., unprocessed) conditions operat-
ing at two SNR levels (0 and 5 dB) in four types of real-
world environments (babble, car, street and train). The
intelligibility scores obtained by human listeners in the 72
conditions (Hu and Loizou, 2007) were used in the present
study to evaluate the predictive power of the newly pro-
posed objective measures.
2. Proposed objective measures for predicting speech

intelligibility

Let y(n) = x(n) + d(n) denote the noisy signal, with x(n)
indicating the clean signal and d(n) indicating the masker
(noise) signal. After windowing the observed signal with
a function h(n), (i.e., Hamming window) we compute the
short-time Fourier transform of y(n) as follows:

Y ðxk;mÞ ¼
XN�1

n¼0

yðmRþ nÞ � hðnÞe�xk �n ð1Þ

where xk = 2pk/N (k = 0, 1, . . ., N � 1) is the frequency
bin index, m is the time frame index, N is the frame size
in samples, and R is the update rate in samples. The exci-
tation (or critical-band) spectrum of y(n) is computed by
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Fig. 1. Top panel (a) shows the FFT magnitude spectrum of a vowel segment excised from the word “trick” in quiet. Bottom panel (b) shows the
excitation spectra of the clean signal and enhanced signal obtained using the RDC spectral-subtractive algorithm (Gustafsson et al., 2001). The band
labeled A in panel (b) shows an example of spectral attenuation distortion, while the band labeled B shows an example of spectral amplification distortion.
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multiplying the FFT magnitude spectra, |Y(xk, m)|, by 25
overlapping Gaussian-shaped windows (Loizou, 2007,
Ch. 11) spaced in proportion to the ear’s critical bands
and summing up the power within each band. This results
in the following critical-band spectra representation of the
signals:

Y ðj;mÞ ¼ X ðj;mÞ þ Dðj;mÞ j ¼ 1; 2; . . . ;K ð2Þ

where K is the number of bands, X(j, m) is the excitation
spectrum of the clean signal in band j at frame m, and
D(j, m) is the excitation spectrum of the masker (noise).
Fig. 1(a) and (b) show respectively example FFT magni-
tude spectra and associated excitation spectra for a vowel
segment excised from the word “trick”. The proposed
objective measures are based on the above derived excita-
tion spectra.
2 The term “SNR loss” also refers to the increased signal-to-noise ratio
required by hearing-impaired listeners to understand speech in noise relative
to that required by normal-hearing listeners (Yoon and Allen, 2006). In the
present study, we use this term to indicate the SNR loss introduced by noise
suppression algorithms rather than acoustic noise alone.
2.1. SNR loss

The SNR loss in band j and frame m is defined as
follows:
Lðj;mÞ ¼ SNRX ðj;mÞ � SNRX̂ ðj;mÞ

¼ 10 � log10

X ðj;mÞ2

Dðj;mÞ2
� 10 � log10

X̂ ðj;mÞ2

Dðj;mÞ2

¼ 10 � log10

X ðj;mÞ2

X̂ ðj;mÞ2
ð3Þ
where SNRX(j, m) is the input SNR in band j, SNRX̂ ðj;mÞ
is the effective SNR of the enhanced signal in the jth fre-
quency band, and X̂ ðj;mÞ is the excitation spectrum of
the processed (enhanced) signal in the j th frequency band
at the mth frame. The first SNR term in Eq. (3) provides
the original SNR in frequency band j before processing
the input signal x(n), while the second SNR term provides
the SNR of the processed (enhanced) signal. The term
L(j, m) in Eq. (3) thus defines the loss in SNR,2 termed
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Fig. 2. Mapping of the different L(j, m) (in dB) between the clean and
enhanced signals to SNRLOSS. The parameters C+ and C�, and the SNR
range ([�SNRLim, SNRLim] dB) control the slope of the mapping function.

Table 1
Band-importance functions (ANSI, 1997) used in the implementation of
the SNRLOSS and SNRLESC measures for consonants and sentence
materials.

Band Center frequencies (Hz) Consonants Sentences

1 50.0000 0.0000 0.0064
2 120.000 0.0000 0.0154
3 190.000 0.0092 0.0240
4 260.000 0.0245 0.0373
5 330.000 0.0354 0.0803
6 400.000 0.0398 0.0978
7 470.000 0.0414 0.0982
8 540.000 0.0427 0.0809
9 617.372 0.0447 0.0690
10 703.378 0.0472 0.0608
11 798.717 0.0473 0.0529
12 904.128 0.0472 0.0473
13 1020.38 0.0476 0.0440
14 1148.30 0.0511 0.0440
15 1288.72 0.0529 0.0470
16 1442.54 0.0551 0.0489
17 1610.70 0.0586 0.0486
18 1794.16 0.0657 0.0491
19 1993.93 0.0711 0.0492
20 2211.08 0.0746 0.0500
21 2446.71 0.0749 0.0538
22 2701.97 0.0717 0.0551
23 2978.04 0.0681 0.0545
24 3276.17 0.0668 0.0508
25 3597.63 0.0653 0.0449
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SNRLOSS, incurred when the corrupted signal goes through
a noise-suppression system. Clearly, when X̂ ðj;mÞ ¼
X ðj;mÞ; the SNRLOSS is zero. It is reasonable to expect
with most noise-suppression algorithms that as the SNR le-
vel increases, i.e., SNR!1, the estimated spectrum
X̂ ðj;mÞ approaches the clean spectrum X(j, m), i.e.,
X̂ ðj;mÞ ! X ðj;mÞ (see proof in (Chen et al., 2006)) for
the Wiener filter enhancement algorithm), and conse-
quently the SNRLOSS is zero. On this regard, the value of
the above SNRLOSS measure depends on the input SNR
value. This is tested in the present study by assessing the
correlation of the SNRLOSS measure with speech intelligi-
bility scores obtained in different SNR level conditions.

Fig. 1 shows an example excitation spectrum of a signal
that has been processed via a spectral subtraction algo-
rithm (Gustafsson et al., 2001). As can be seen from this
example, the SNR loss can be positive in some bands (see
label A in panel (b)) suggesting the presence of spectral
attenuation distortion or could be negative in others (see
label B in panel (b)) suggesting spectral amplification
distortion.

Following the computation of the SNR loss in Eq. (3),
the L(j, m) term is limited to a range of SNR levels. In
the SII index (ANSI, 1997), for instance, the SNR calcula-
tion is limited to the range of [�15, 15] dB, prior to the
mapping of the computed SNR to the range of [0, 1].
Assuming in general the restricted SNR range of
[�SNRLim, SNRLim] dB, the L(j, m) term is limited as
follows:

L̂ðj;mÞ ¼ minðmaxðLðj;mÞ;�SNRLimÞ; SNRLimÞ ð4Þ
and subsequently mapped to the range of [0, 1] using the
following equation:

SNRLOSSðj;mÞ ¼
� C�

SNRLim
L̂ðj;mÞ if L̂ðj;mÞ < 0

Cþ
SNRLim

L̂ðj;mÞ if L̂ðj;mÞP 0

(
ð5Þ

where C+ and C� are parameters (defined in the range of
[0, 1]) controlling the slopes of the mapping function (see
Fig. 2). Note that the SNRLim values in the above equation
do not denote the assumed speech dynamic range but
rather the limits imposed to the computed SNR values.
The above equation normalizes the frame SNRLOSS to
the range of 0 6 SNRLOSS(j, m) 6 1 since 0 6 C+, C� 6 1.
The average SNRLOSS is finally computed by averaging
SNRLOSS(j, m) over all frames in the signal as follows:

SNRLOSS ¼
1

M

XM�1

m¼0

fSNRLOSSðmÞ ð6Þ

where M is the total number of data segments in the signal
and fSNRLOSS(m) is the average (across bands) SNR loss
computed as follows:

fSNRLOSSðmÞ ¼
PK

j¼1W ðjÞ � SNRLOSSðj;mÞPK
j¼1W ðjÞ

ð7Þ

where W(j) is the weight (i.e., band importance function
(ANSI, 1997) placed on the jth frequency band. The
weighting function W(j) can be signal dependent (Ma
et al., 2009), but in our case we set it equal to band-impor-
tance functions similar to those given in (ANSI, 1997). The
band-importance functions were taken from Table B.1 in
the ANSI standard (ANSI, 1997). For the consonant mate-
rials, we used the nonsense syllable functions and for the
sentence materials we used the short-passage functions gi-
ven in Table B.1 in (ANSI, 1997). The functions were line-
arly interpolated to reflect the range of band center-
frequencies adopted in the present study (the values for
the 50 and 120 Hz bands were extrapolated). It should be
noted that due to the smaller signal bandwidth and the
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use of interpolated values, the sum of the articulation index
weights given in Table 1 does not add up to 1. Despite that,
due to the normalization term used in the denominator of
Eq. (7), the fSNRLOSS(m) measure is always smaller than 1.

Based on Eq. (5), it is easy to show that Eq. (7) can be
decomposed into two terms as follows (assuming for con-
venience that W(j) = 1 for all j):

fSNRLOSSðmÞ¼
1

K

X
j:L̂ðj;mÞP0

SNRLOSSðj;mÞþ
X

j:L̂ðj;mÞ<0

SNRLOSSðj;mÞ

2
4

3
5

¼ 1

K
½SNRþðmÞþSNR�ðmÞ�

ð8Þ

where the terms SNR� and SNR+ are used to indicate the
isolated SNR loss due to amplification and attenuation dis-
tortions respectively. As it will be shown later (see Sec-
tion 5), the SNR+ and SNR� measures can be used as a
diagnostic tool when analyzing the performance of speech
enhancement algorithms.

From Eqs. (4) and (5), it is clear that the SNRLOSS mea-
sure depends on the SNRLim and the parameters C+ and
C�, both of which control the slope of the mapping func-
tion (see Fig. 2). The parameters C+ and C� are quite
important, as they can tell us about the individual contri-
bution of the spectral attenuation (occurring when
X ðj;mÞ > X̂ ðj;mÞ) and spectral amplification (occurring
when X ðj;mÞ < X̂ ðj;mÞ) distortions introduced by noise-
suppression algorithms to speech intelligibility (see exam-
ple in Fig. 1). By setting C+ = 1 and C� = 0, for instance,
we can assess whether we can better predict speech intelli-
gibility when accounting only for spectral attenuation dis-
tortions while ignoring spectral amplification distortions.
Similarly, by setting C+ = 1 and C� = 1, we can assess
whether both distortions (spectral amplification and atten-
uation) should be weighted equally. In brief, the parame-
ters C+ and C� can help us assess the perceptual impact
of the spectral distortions introduced by noise-suppression
algorithms. Given the importance of the parameters C+

and C�, we varied independently their values from 0 to 1
(in steps of 0.2) and examined the resulting SNRLOSS cor-
relation with speech intelligibility.

While the parameters C+ and C� in Eq. (5) can be used
to control the importance of the type of spectral distortion
(spectral amplification and/or attenuation) introduced by
noise-suppression algorithms, the SNRLim parameter can
be used to assess the amount of spectral distortion that
should be included in the SNRLOSS calculation. In the com-
putation of the SII measure, for instance, the SNRLim

parameter is set to 15 dB, suggesting that band SNRs lar-
ger than 15 dB do not contribute further to intelligibility
and should not be included in the calculation of the SII
index. Hence, by varying the SNRLim parameter in the
present study we can examine the lower/upper limits of
spectral distortions that should be included in the calcula-
tion of the SNRLOSS measure. In the example shown in
Fig. 1, for instance, band A (see panel (b)) was attenuated
by nearly 30 dB. Had this band been attenuated by say
5 dB, would it make the processed speech stimulus more
intelligible or does there exist a critical “saturation” point
beyond which the distortions do not contribute further to
intelligibility loss? To answer these questions, we vary the
SNRLim parameter (and associated SNR dynamic range)
in the present study from a low of 2 dB to a high of
50 dB, and examine the resulting correlations with speech
intelligibility scores.

Fig. 3 shows an example frame SNRLOSS values for a
sentence (in 0 dB SNR babble) processed via the RDC
spectral-subtractive algorithm (Gustafsson et al., 2001).
The spectrograms of the clean and enhanced signals are
also shown for comparison. The average SNRLOSS value
for this example was 0.86. For this example, the SNRLOSS

value was high during the unvoiced segments and was rel-
atively low during voiced segments. This is consistent with
the fact that most speech-enhancement algorithms do not
perform well during unvoiced segments, as those low-
SNR segments are heavily masked by noise.

The SNRLOSS measure bears some resemblance to the
intelligibility-weighted gain in SNR (Greenberg et al.,
1993) which is computed as follows:

GI ¼ SNROUT � SNRIN

¼
XK

k¼1

W kSNROUTðkÞ �
XK

k¼1

W kSNRINðkÞ ð9Þ

where Wk denote the weights (i.e., band-importance func-
tions) applied to band k, SNROUT is the output SNR (ex-
pressed in dB) in band k computed using the processed
clean and noise signals, and SNRIN is the input SNR com-
puted using the input (clean) signal. Note that unlike the
enhanced signal’s SNR used in Eq. (3), the SNROUT term
is computed using the processed (by the algorithm’s sup-
pression function) clean and noise signals, and is not based
solely on the enhanced output signal (e.g., Spriet et al.,
2005). Furthermore, the SNR calculations in Eq. (9) are
not restricted to a finite range (e.g., 30 dB). In contrast,
the band SNRs used in the SNRLOSS measure are restricted
to a small range (see Eq. (4) and Fig. 2) and are mapped
nonlinearly to the range of [0, 1] after the subtraction oper-
ation. The above measure was originally intended to char-
acterize an effective signal-to-noise ratio in speech
transmission systems, and not to predict speech intelligibil-
ity (Greenberg et al., 1993).

The SNRLOSS measure given in Eq. (3) also bears some
resemblance to the spectral distortion (SD) measure often
used in speech coding particularly in the design of vector
quantizers (Paliwal and Atal, 1993; Nein and Lin, 2001):

SD ¼ 1

F s

Z F s

0

10log10ðP X ðf ÞÞ � 10log10ðP X̂ ðf ÞÞ½ �2df
� �1=2

ð10Þ

where PX(f) and P X̂ ðf Þ denote the power spectra of the
clean and coded (processed) spectra respectively, and Fs de-
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Fig. 3. Top two panels show spectrograms of a sentence in quiet and corrupt sentence processed by the RDC spectral-subtractive algorithm (Gustafsson
et al., 2001), respectively. The input sentence was corrupted by babble at 0 dB SNR. Bottom panel shows the frame SNRLOSS values. The average
SNRLOSS was 0.86 (SNRLim was set to 5 dB).
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notes the sampling frequency. There is one fundamental
difference between the definition of SD and Eq. (3). The
spectral log difference in Eq. (10) is squared, while the
log difference in Eq. (3) is not. As mentioned earlier, when
the difference is squared, no distinction is made between the
amplification and attenuation distortions as they are both
lumped into one. The SD measure is also used sometimes
for evaluating noise-suppressed speech (Cohen and Gan-
not, 2008). For comparative purposes, we will also evaluate
in the present study a critical-band based version of Eq.
(10), denoted as SDCB, and implemented as follows:

SDCBðmÞ ¼
1

K

XK

j¼1

ðLðj;mÞÞ2
" #1=2

ð11Þ
where L(j, m) is given by Eq. (3). Aside from the spectral
distortion given in Eq. (10), a number of other spectral dis-
tortion measures were proposed in (Chen et al., 2006;
Benesty et al., 2009). These measures were computed for
the most part in the context of Wiener filtering, and more
generally, in the context of linear estimators of speech
including those applied in the KLT domain. Some mea-
sures were also proposed for non-linear estimators of the
speech spectrum (Benesty et al., 2009). The proposed
SNRLOSS measure can be used for speech processed by
either linear or non-linear estimators. Furthermore, the
spectral distortion measures proposed in (Chen et al.,
2006; Benesty et al., 2009) were not validated with human
intelligibility tests, hence it remains uncertain as to how
reliably can these measures predict speech distortion or
speech intelligibility.
2.2. Excitation spectra correlation (ESC)

The excitation spectral correlation (ESC) measure at
frame m is computed as follows:

r2ðmÞ ¼
PK

k¼1X ðk;mÞ � X̂ ðk;mÞ
� �2PK
k¼1X 2ðk;mÞ �

PK
k¼1X̂ 2ðk;mÞ

ð12Þ

where K is the number of bands (K = 25 in our study).
Note that the above equation gives the squared Pearson’s
correlation between the clean and enhanced excitation
spectra (assuming that these spectra have a zero mean).
As such, the r2(m) values are limited to 0 6 r2(m) 6 1. A va-
lue of r2(m) close to 1 would suggest that the input and pro-
cessed signals are linearly related, while a value of r2(m)
close to 0 would indicate that the input and processed sig-
nals are uncorrelated. At the extreme case wherein
X̂ ðj;mÞ ¼ a � X ðj;mÞ for all bands, then it is easy to show
from Eq. (12) that r2(m) = 1. Hence, if a > 1 that would
suggest that X̂ ðj;mÞ is uniformly amplified across all bands,
and similarly if a < 1 that would suggest that X̂ ðj;mÞ is uni-
formly attenuated across all bands. Uniform spectral dis-
tortion, across all bands, would indicate that the shape of
the spectral envelope (which includes the formant peaks,
F1 and F2, in voiced segments, e.g., vowels) is grossly pre-
served, and consequently intelligibility should not be de-
graded. On the other hand, if the spectral distortions
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vary across bands (as is often the case) in that speech is
attenuated in some bands and amplified in others, then
intelligibility would likely suffer and the resulting correla-
tion will be low or lie somewhere between 0 and 1. Fig. 4
shows two example spectra in which the correlations are
high and low, demonstrating the above concept and moti-
vation for the use of the ESC measure.

The average ESC is computed by averaging r2(m) over
all frames in the signal as follows:

ESC ¼ 1

M

XM�1

m¼0

r2ðmÞ ð13Þ

Based on the assumption that the excitation spectra have
zero mean, it is easy to show that r2(m) (Eq. (12)) is related
to the signal-to-residual noise ratio (SNRES) as follows (see
Appendix A):

SNRESðmÞ ¼
PK

k¼1X 2ðk;mÞPK
k¼1 X ðk;mÞ � X̂ ðk;mÞ
� �2

¼ r2ðmÞ
1� r2ðmÞ ð14Þ
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Fig. 4. Example excitation spectra of the clean and enhanced signals in two
amplification and attenuation distortions are non-uniformly distributed acros
spectrum is for the most part uniformly (across nearly all bands) attenuated. Th
each figure.
Note that the denominator provides the power of the resid-
ual spectrum, which is not necessarily the same as the
power of the masker spectrum. For that reason, we refer
to the above term as SNRES rather than as SNR. The
time-domain counterpart of SNRES is the segmental SNR
(SNRseg), often used in the evaluation of speech enhance-
ment and speech coding algorithms (Quackenbush et al.,
1988).

The excitation spectra, X(k, m) and X̂ ðk;mÞ, are positive
quantities and have a non-zero (and time-varying) mean.
Consequently, we also considered the following covariance
measure which accounts for the means of the excitation
spectra:

r2
lðmÞ ¼

PK
k¼1ðX ðk;mÞ � lX ðmÞÞ � ðX̂ ðk;mÞ � lX̂ ðmÞÞ

� �2PK
k¼1ðX ðk;mÞ � lX ðmÞÞ

2 �
PK

k¼1ðX̂ ðk;mÞ � lX̂ ðmÞÞ
2

ð15Þ

where lX(m) and lX̂ ðmÞ denote the means of X(k, m) and
X̂ ðk;mÞ respectively (e.g., lX(m) = 1/K

P
kX(k, m)). The
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different scenarios. Top panel shows an example in which the spectral
s the spectrum. Bottom panel shows an example in which the enhanced
e resulting excitation spectrum correlation (ESC) is indicated in the top of
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average covariance (across the whole utterance) of the exci-
tation spectra is computed as in Eq. (13) and is denoted as
ESCl..

The average ESC measure (Eq. (13)) was computed by
averaging r2(m) over all frames in the signal, putting equal
emphasis on low-energy (e.g., fricatives) and high-energy
(e.g., vowels) phonetic segments. Higher correlations were
obtained in (Kates and Arehart, 2005), when dividing the
M speech segments into three level regions, and computing
separately the measure for each region. The high-level
region consisted of segments at or above the overall
RMS level of the whole utterance. The mid-level region
consisted of segments ranging from the overall RMS level
to 10 dB below the overall RMS level, and the low-level
region consisted of segments ranging below RMS-10 dB.
The three-level ESC measures obtained for the low-, mid-
and high-level segments were denoted as ESCLow, ESCMid

and ESCHigh respectively.

3. Combining the SNRLOSS and ESC measures

The ESC measure has an attractive feature that is absent
from the SNRLOSS measure. As illustrated in Fig. 4, when
the enhanced output signal is uniformly (across all bands)
attenuated/amplified, the resulting correlation is near
one. In contrast, the SNRLOSS measure reaches its maxi-
mum value (since it is limited by SNRLim), and conse-
quently yields a high SNR loss value (near one), which is
inappropriate for uniform distortions and likely inconsis-
tent with intelligibility scores. For that reason, we propose
to combine the two measures as follows:

SNRLESCðmÞ ¼ ð1� r2ðmÞÞ � fSNRLOSSðmÞ ð16Þ
where SNRLESC(m) is the new measure at frame m, and
fSNRLOSS(m) is the average frame SNRLOSS given by Eq.
(7). The SNRLESC measure is bounded within the range
of 0–1, and assumes a high value (i.e., near one) when both
the terms (1 � r2(m)) and SNRLOSS assume a high value,
and assumes a small value when either of the two measures
takes on a small value (i.e., near zero). The average, across
the whole utterance, SNRLESC measure is computed as in
Eq. (13). Depending on the implementation of r2(m), two
different measures are produced, denoted as SNRLESC
(based on Eq. (12)) and SNRLESCl (based on Eq. (15)).
Fig. 5 shows as an example, the frame SNRLESC values
superimposed to the frame SNRLOSS values for an utter-
ance processed by the spectral-subtractive algorithm in
(Gustafsson et al., 2001). As can be seen, the SNRLESC
curve follows for the most part the SNRLOSS curve with
the exception when (1 � r2(m)) is close to zero.

As will be shown later, the SNRLOSS measure performs
quite well despite the above limitation in dealing with uni-
form distortions. This is perhaps because uniform distor-
tions occur significantly less often in noise-suppressed
speech than non-uniform distortions. The proposed SNR-
LESC measure is meant to enhance the prediction power
of the SNRLOSS measure. MATLAB code for the imple-
mentation of the proposed measures is available from:
http://www.utdallas.edu/~loizou/speech/.

4. Intelligibility listening tests

In order to properly evaluate the predictive power of the
proposed objective measures, we need intelligibility scores
obtained from human listeners. For that, we will be using
the intelligibility evaluation study of noise-corrupted
speech processed through eight different noise-suppression
algorithms as reported in (Hu and Loizou, 2007). This
study is summarized briefly below.

IEEE sentences (IEEE Subcommittee, 1969) and conso-
nants in /a C a/ format were used as test material. The con-
sonant test included 16 consonants recorded in /a C a/
context, where C = /p, t, k, b, d, g, m, n, dh, l, f, v, s, z,
sh, dj/. These recordings were originally sampled at
25 kHz, but were downsampled to 8 kHz and are available
in (Loizou, 2007). The masker signals were taken from the
AURORA database (Hirsch and Pearce, 2000) and
included the following real-world recordings from different
places: babble, car, street, and train. The maskers were
added to the speech signals at SNRs of 0 and 5 dB. A total
of 40 native speakers of American English were recruited
for the sentence intelligibility tests, and 10 additional listen-
ers were recruited for the consonant tests. A total of 40
native speakers of American English were recruited for
the sentence intelligibility tests. The 40 listeners were
divided into four panels (one per type of noise), with each
panel consisting of 10 listeners. The processed speech files
(sentences/consonants), along with the clean and noisy
speech files, were presented monaurally to the listeners in
a double-walled sound-proof booth (Acoustic Systems,
Inc.) via Sennheiser’s (HD 250 Linear II) circumaural
headphones at a comfortable level. The intelligibility study
by Hu and Loizou (2007) produced a total of 72 noisy con-
ditions including the noise-corrupted (unprocessed) condi-
tions. The intelligibility scores obtained in the 72
conditions were used in the present study to evaluate the
predictive power of the newly proposed objective measures.

5. Results

Two figures of merit were used to assess the perfor-
mance of the above objective measures in terms of predict-
ing speech intelligibility in noise. The first figure of merit
was the Pearson’s correlation coefficient, r, and the second
figure of merit was an estimate of the standard deviation of
the prediction error computed as re ¼ rd

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

, where rd

is the standard deviation of the speech recognition scores in
a given condition, and re is the standard deviation of the
error. A smaller value of re indicates that the objective
measure is better at predicting speech intelligibility.

The average intelligibility scores obtained by normal-
hearing listeners in the 72 different noisy conditions (see
Section 4), were subjected to correlation analysis with the
corresponding mean values obtained with the objective

http://www.utdallas.edu/~loizou/speech/
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Fig. 5. The top two panels show time-domain waveforms of a sentence in quiet and processed by the RDC spectral-subtractive algorithm respectively. The
input sentence was corrupted by babble at 0 dB SNR (same as in Fig. 3). Bottom panel shows the frame SNRLESC values (dashed lines) superimposed to
the frame SNRLOSS values (solid lines). The average SNRLOSS was 0.86 and the average SNRLESC value was 0.48 (SNRLim was set to 5 dB).

Table 2
Correlations between the proposed measures and consonants/sentence
recognition scores. The SNR range used in the computation of the
SNRLOSS and SNRLESC measures was fixed at [�15, 15] dB.

Speech material Objective measure r re

Consonants SNRLOSS �0.67 0.09
ESC 0.70 0.09
ESCHigh 0.61 0.10
ESCMid 0.73 0.08
ESCLow 0.29 0.12
ESCl 0.68 0.09
ESCl-High 0.60 0.10
ESCl-Mid 0.71 0.09
ESCl-Low 0.56 0.10
SNRLESC �0.71 0.09
SNRLESCl �0.66 0.09
SDCB �0.33 0.12

Sentences SNRLOSS �0.61 0.14
ESC 0.82 0.10
ESCHigh 0.83 0.10
ESCMid 0.84 0.09
ESCLow 0.46 0.15
ESCl 0.83 0.10
ESCl-High 0.83 0.10
ESCl-Mid 0.83 0.10
ESCl-Low 0.57 0.14
SNRLESC �0.72 0.12
SNRLESCl �0.72 0.12
SDCB �0.26 0.17
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measures. A total of 1440 processed speech samples were
included in the correlations encompassing two SNR levels
(0 and 5 dB), four different types of background noise and
speech/noise distortions introduced by 8 different speech
enhancement algorithms (1152 processed speech samples
were used for consonants). The intelligibility scores for
each speech sample were averaged across all listeners
involved in that test. Similarly, the values from the objec-
tive measures were averaged across the speech material
(20 sentences or 16 consonants) used in each condition. A
logistic function was used to map the values obtained by
the objective measures to speech intelligibility scores.

As mentioned earlier, these conditions involved noise-
suppressed speech (consonants and sentences) originally
corrupted by four different maskers (car, babble, train
and street interferences) at two different SNR levels. The
computed correlation coefficients (and prediction errors)
are tabulated separately for the consonants and sentence
materials and are given in Table 2. For the computation
of the SNRLOSS measure, we initially set SNRLim = 15 dB
(as used in (ANSI, 1997)) and C+ = C� = 1. Further exper-
iments were carried out using different values of SNRLim

and C+, C� (see later sections). All measures were com-
puted by segmenting the sentences using 20-ms duration
Hamming windows with 75% overlap between adjacent
frames.

As shown in Table 2, of the three measures proposed,
the SNRLESC measure performed the best (r = �0.71) in
predicting consonant recognition scores, while the ESCl

measure performed the best (r = 0.83) in predicting sen-
tence recognition scores. The SNRLOSS measure performed
modestly well, at least for the SNRLim range tested
(SNRLim = 15 dB). Significant improvements in correlation
were noted, however, when the SNRLim range was reduced
(see Table 3 and later experiments). The spectral log differ-
ence measure (SDCB in Eq. (11)), which is often used to



Table 3
Correlations between the SNRLOSS measure and consonants/sentence
recognition scores as a function of the SNR dynamic range. Bold numbers
indicate the highest correlations obtained.

Speech material SNR range (dB) r re

Consonants [�1, 1] �0.73 0.08
[�3, 3] �0.77 0.08

[�5, 5] �0.76 0.08
[�10, 5] �0.75 0.08

[�10, 10] �0.72 0.09
[�10, 35] �0.33 0.12
[�15, 5] �0.72 0.09

[�15, 10] �0.71 0.09
[�15, 15] �0.67 0.09
[�15, 35] �0.39 0.11
[�20, 5] �0.68 0.09

[�20, 10] �0.69 0.09
[�20, 20] �0.62 0.10
[�25, 10] �0.66 0.09
[�30, 10] �0.63 0.10

Sentences [�1, 1] �0.77 0.11
[�3, 3] �0.82 0.10

[�5, 5] �0.80 0.10
[�10, 5] �0.76 0.11

[�10, 10] �0.71 0.12
[�10, 35] �0.31 0.17
[�15, 5] �0.69 0.14

[�15, 10] �0.67 0.13
[�15, 15] �0.61 0.14
[�15, 35] �0.36 0.16
[�20, 5] �0.62 0.14

[�20, 10] �0.62 0.14
[�20, 20] �0.53 0.15
[�25, 10] �0.57 0.14
[�30, 10] �0.52 0.15
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assess speech distortion introduced by speech enhancement
algorithms (Cohen and Gannot, 2008) or vector quantizers
(Paliwal and Atal, 1993) yielded the lowest correlation
(|r| = 0.26–0.33) for both consonant and sentence recogni-
tion. This outcome highlights the negative implications of
lumping the amplification and attenuation distortions into
one, as done when the log difference between the clean and
processed spectra is squared (see Eq. 10).

Among the three-level ESC measures, the mid-level ESC
(ESCMid) measure yielded the highest correlation for both
consonant (r = 0.73) and sentence materials (r = 0.84),
consistent with the outcome reported in (Kates and Are-
hart, 2005). The ESCMid measure captures information
about envelope transients and spectral transitions, critical
for the transmission of information regarding place of
articulation.

Further experiments were conducted to assess the influ-
ence of the SNR range (SNRLim) and the parameters C+

and C� involved in the computation of the SNRLOSS and
SNRLESC measures. These experiments are discussed next.
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
20

SNRloss

Fig. 6. Scatter plots of the intelligibility scores obtained by human
listeners and predicted SNRLOSS values for the sentence and consonants
materials.
5.1. Influence of mapped SNR range

To assess the influence of the mapped SNR range on the
performance of the SNRLOSS measure, we varied the SNR
range from a low of 2 dB to a high of 50 dB. The parame-
ters C+ and C� were both set to one. The resulting corre-
lation coefficients are given in Table 3. As can be seen,
the highest correlations were obtained when the SNR range
was limited to [�3, 3] dB. Significant improvement was
noted on the prediction of sentence recognition scores;
the correlation coefficient improved from r = �0.61, based
on the SNR range of [�15, 15] dB (adopted in the SII index
computation), to r = �0.82 based on the SNR range of
[�3, 3] dB. This outcome suggests that, unlike the SII index
(ANSI, 1997), the spectral distortions introduced by noise-
suppression algorithms do not contribute proportionally,
within a 30 dB dynamic range, to speech intelligibility loss.
The contribution of SNR loss to speech intelligibility seems
to reach a saturation point at the [�3, 3] dB limits. Put dif-
ferently, processed speech with a measured SNR loss of say
10 dB is not less intelligible than processed speech with an
SNR loss of 5 dB. Based on Table 3, we can thus conclude
that only spectral distortions falling within a 6 dB range
(i.e., within [�3, 3] dB) should be included in the computa-
tion of the SNRLOSS measure.

Fig. 6 shows the scatter plot of the predicted SNRLOSS

scores (obtained using the [�3, 3] dB range) against the lis-
teners’ recognition scores for consonants and sentences.
Figs. 7 and 8 show the individual scatter plots broken
down by noise type for sentence and consonant recognition
respectively. A logistic function was used to map the objec-
tive scores to intelligibility scores. As can be seen, a high
correlation was maintained for all noise types, including
modulated (e.g., train) and non-modulated (e.g., car)
maskers. The correlations with consonant recognition
scores ranged from r = �0.81 with babble to r = �0.87
with street noise. The correlations with sentence recogni-
tion scores ranged from r = �0.84 with car noise to
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Fig. 7. Individual scatter plots of the sentence intelligibility scores and
predicted SNRLOSS values for the four maskers tested.
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Fig. 8. Individual scatter plots of the consonant intelligibility scores and
predicted SNRLOSS values for the four maskers tested.

Table 4
Correlations between the SNRLESC measure and consonants/sentence
recognition scores. The SNR range was set to [�3, 3] dB.

Speech Material Objective measure r re

Consonants SNRLESC �0.73 0.08
SNRLESCHigh �0.64 0.09
SNRLESCMid �0.74 0.08
SNRLESCLow �0.39 0.11
SNRLESCl �0.70 0.09
SNRLESCl-High �0.63 0.10
SNRLESCl-Mid �0.73 0.08
SNRLESCl-Low �0.59 0.10

Sentences SNRLESC �0.82 0.10
SNRLESCHigh �0.84 0.09
SNRLESCMid �0.85 0.09
SNRLESCLow �0.51 0.15
SNRLESCl �0.84 0.09
SNRLESCl-High �0.84 0.09
SNRLESCl-Mid �0.85 0.09
SNRLESCl-Low �0.58 0.14
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Fig. 9. Individual scatter plots of the sentence intelligibility scores and
predicted SNRLESCl values for the four maskers tested.
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r = �0.88 with street noise. The correlations were obtained
with logistic-type fitting functions.

Having determined the optimum SNR range to use in
the computation of the SNRLOSS measure, we re-examined
the correlations of the SNRLESC measure based on the
[�3, 3] dB range. The resulting correlation coefficients are
shown in Table 4. Consistent improvements in the correla-
tion coefficient were noted for both consonants and sen-
tence materials. The correlation coefficient obtained using
the SNRLESC measure was higher than obtained with
either the ESC or SNRLOSS measures alone. The highest
correlation (r = �0.84) with sentence materials was
obtained with the SNRLESCl measure. Fig. 9 shows the
individual scatter plots of the predicted SNRLESCl values
broken down by noise type for sentence recognition. Fur-
ther improvements were obtained with the three-level
SNRLESCl and SNRLESC measures.
5.2. Influence of parameter values C+ and C�

In the previous experiments, the parameters C+ and C�
were fixed to one. To assess the influence of the parameters
C+ and C� on predicting speech intelligibility, we varied
independently the values of the parameters from 0 to 1,
in steps of 0.2. The resulting correlation coefficients are
shown in Table 5. As can be seen from Table 5, the opti-
mum values for the parameters C+ and C� are 1 and 1,
respectively. This suggests that both spectral attenuation
and amplification distortions need to be included in the



Table 5
Correlations between the SNRLOSS measure and consonants/sentence
recognition scores for various values of the parameters C+ and C�.

Material C� C+ r re

Consonants 1 0 0.11 0.12
1 0.2 0.08 0.12
1 0.4 0.02 0.12
1 0.6 �0.10 0.12
1 0.8 �0.42 0.11
1 1 �0.77 0.08

0 1 �0.24 0.12
0.2 1 �0.27 0.12
0.4 1 �0.31 0.12
0.6 1 �0.39 0.11
0.8 1 �0.55 0.10

Sentences 1 0 0.06 0.17
1 0.2 0.03 0.17
1 0.4 �0.03 0.17
1 0.6 �0.13 0.17
1 0.8 �0.41 0.16
1 1 �0.82 0.10

0 1 �0.18 0.17
0.2 1 �0.21 0.17
0.4 1 �0.25 0.17
0.6 1 �0.33 0.16
0.8 1 �0.51 0.15
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Fig. 10. Plot of the SNR+ and SNR� values for the 8 enhancement
algorithms used in the 5-dB SNR car noise condition (Hu and Loizou,
2007). SNR+ indicates the predicted loss in intelligibility due to spectral
attenuation distortions, and SNR� indicates the predicted loss in
intelligibility due to spectral amplification distortions. The unprocessed
(corrupted) sentences are indicated as UN, and the enhancement
algorithms include the KLT (Hu and Loizou, 2003), pKLT (Jabloun
and Champagne, 2003), MSE (Ephraim and Malah, 1984), MSE2
(Ephraim and Malah, 1984), RDC (Gustafsson et al., 2001), MB (Kamath
and Loizou, 2002), WT (Hu and Loizou, 2004) and Wie (Scalart and
Filho, 1996) algorithms.
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SNRLOSS calculation and that these distortions contribute
equally to loss in intelligibility. It is interesting to note how-
ever that the correlation coefficient dropped significantly
(near zero) when C+ was set to a small value, and the C�
value was fixed at 1. The resulting correlation (r = �0.03)
obtained, for instance, with C+ = 0.4 and C� = 1, did not
differ significantly from zero (p = 0.829). A relatively smal-
ler decrease in correlation coefficient was obtained when
C� was set to a small value, and the C+ value was fixed
at 1 (resulting correlations were significant, p < 0.05). This
indicates that, when limited to the [�3, 3] dB range, both
distortions need to be included in the computation of the
SNRLOSS measure for maximum correlation with speech
intelligibility scores.

The overall SNR loss introduced by speech enhance-
ment algorithms can be written, based on Eq. (5), as the
sum of the loss due to spectral amplification distortion
and the loss due to the spectral attenuation distortion
(see Eq. (8)). As shown in Eq. (8), the overall SNR loss
can be decomposed as: SNRLOSS = SNR+ + SNR�, where
SNR+ indicates the loss in intelligibility due to spectral
attenuation distortions alone, and SNR� indicates the loss
in intelligibility due to spectral amplification distortions
alone. This decomposition of the SNR loss values can pro-
vide valuable information when analyzing the performance
of individual algorithms as it can be used to create an intel-
ligibility-loss profile for the algorithm tested. To illustrate
this, we computed the SNR+ and SNR� values for the 8
enhancement algorithms used in the 5-dB SNR car noise
condition in (Hu and Loizou, 2007). The results are shown
in Fig. 10. The (unprocessed) corrupted files (indicated as
UN in Fig. 10) had the smallest intelligibility loss when
only attenuation distortions were introduced, and had the
highest intelligibility loss when only amplification distor-
tions were introduced. This suggests that the amplification
distortions had a detrimental (negative) effect on speech
intelligibility, a conclusion that is consistent with the listen-
ing studies conducted in (Loizou and Kim, 2011). Relative
to the corrupted signals, the Wiener filtering algorithm
(Scalart and Filho, 1996) reduced the spectral attenuation
distortion and introduced only modest spectral amplifica-
tion. The Wiener filtering algorithm yielded the lowest
spectral attenuation distortion among all algorithms tested,
while maintaining modest amplification loss. Largest
improvements in intelligibility were obtained with the Wie-
ner algorithm compared to all other algorithms. In fact,
performance with the Wiener algorithm was higher (by
10% points) than performance obtained with the corrupted
(unprocessed) signals. The statistical model-based algo-
rithms (e.g., Ephraim and Malah, 1985) maintained a good
balance between the two distortions. From the SNRLOSS

profile depicted in Fig. 10 and the associated intelligibility
scores, we conclude that the loss due to spectral amplifica-
tion is most detrimental to speech intelligibility and more
so than the loss due to spectral attenuation distortions, at
least when the distortions are limited within the
[�3, 3] dB range. In brief, the SNR+ and SNR� measure-
ments of the two distortions can serve as a valuable tool
when analyzing individual algorithms in terms of identify-
ing potential loss in intelligibility caused by spectral
distortions.
5.3. Effect of window duration

Unlike the SII standard (ANSI, 1997) which uses a 125-
ms integration window, a 20-ms integration window was
used in our present study for the implementation of the
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SNRLOSS measure. The study in (Ma et al., 2009) noted a
positive influence of window duration on the performance
of AI-based objective measures, in that a longer window
produced higher correlation with intelligibility scores.
The study in (Paliwal and Wojcicki, 2008) revealed that
an analysis window duration of 15–35 ms seems to be the
optimum choice, in terms of intelligibility, when speech is
reconstructed from its short-time magnitude spectrum.
To examine the influence of window duration on the per-
formance of the SNRLOSS measure, we varied the window
duration from 4 ms to 125 ms. Results showed that the
window duration did not seem to influence greatly the
resulting correlation coefficients for either consonants or
sentences.
5.4. Comparison with other objective measures

Table 6 compares the correlation obtained with the
SNRLOSS, ESC and SNRLESC measures against the corre-
lations obtained with other conventional objective mea-
sures including the PESQ measure (ITU, 2000). The
comparison additionally includes an AI-based measure
(indicated as AI-ST) and an STI-based measure (indicated
as NCM). These measures have been evaluated with the
same data used in the present study and were previously
reported in (Ma et al., 2009). As can be seen, the proposed
SNRLOSS measure performed better than the PESQ and
AI-based measures on predicting sentence recognition,
but did not perform as well as the STI-based measure
(NCM). The PESQ measure was reported in (Beerends
et al., 2004) to produce higher correlations (r > 0.9) than
those shown in Table 6, however, it was only evaluated
with binaurally-processed speech, and the evaluation did
not include the many different variations of distortions that
can be introduced by noise-suppression algorithms. Com-
putationally, the proposed SNRLOSS measure offers the
advantage that it can be computed on a frame-by-frame
Table 6
Comparison of correlations with the proposed SNRLOSS, SNRLESC and
ESC measures, against other conventional objective measures reported in
(Ma et al., 2009).

Speech material Objective measure r re

Consonants SNRLOSS �0.77 0.08
SNRLESC �0.73 0.08
SNRLESCl-Mid �0.73 0.08
ESC 0.70 0.09
PESQ 0.77 0.08
AI-ST (Ma et al., 2009) 0.68 0.10
NCM (Ma et al., 2009) 0.77 0.08

Sentences SNRLOSS �0.82 0.10
SNRLESC �0.82 0.10
SNRLESCl-Mid �0.85 0.09
ESC 0.82 0.10
PESQ 0.79 0.11
AI-ST (Ma et al., 2009) 0.80 0.11
NCM (Ma et al., 2009) 0.89 0.07
basis, whereas the PESQ and STI-based measures require
access to the whole signal prior to computing the measure.

6. Summary and conclusions

The present study evaluated the performance of three
new objective measures (SNRLOSS, ESC and SNRLESC)
for predicting speech intelligibility in noisy conditions.
The objective measures were tested in a total of 72 noisy
conditions which included processed sentences and non-
sense syllables corrupted by four real-world types of noise
(car, babble, train, and street). The distinct contributions
and conclusions of the present work include the following:

1. Unlike traditional intelligibility indices (e.g., SII and
STI) the proposed objective measures operate on
short-time intervals (20 ms) and can predict well the
intelligibility of speech processed in fluctuating maskers
(e.g., train, street noise) by noise-suppression algo-
rithms. Consistently high correlations (|r| = 0.84–0.88)
scores were found across the four maskers tested (see
Figs. 7–9).

2. Of the three measures proposed, the SNRLESCl mea-
sure yielded the highest overall correlation (r = �0.84)
for predicting sentence recognition in noisy conditions.
High correlation was maintained for all four maskers
tested, and ranged from r = �0.84 obtained in car-noise
conditions to r = �0.88 in street-noise conditions. Fur-
ther improvement in correlation was attained when
including only mid-level energy frames (i.e., frames with
RMS energy in the range of 0 to -10 dB relative to the
overall RMS level) in the calculation of the SNRLESCl
measure. The resulting correlation improved to
r = �0.85 (see Table 4).

3. Experiments with the SNRLOSS measure indicated that
the spectral distortions introduced by noise-suppression
algorithms do not contribute proportionally, within a
30 dB dynamic range, to the loss in speech intelligibility.
Only spectral distortions falling within a 6 dB range (i.e.,
within [�3, 3] dB) were found to contribute the most to
intelligibility loss, at least for the two input SNR levels
(0 and 5 dB) tested in this study.

4. When limited within the [�3, 3] dB range, the spectral
attenuation distortions were found to carry a smaller
perceptual weight compared to the spectral amplifica-
tion distortions (see Table 5 and Fig. 10). This outcome
is consistent with the listening studies reported in (Loi-
zou and Kim, 2011). Equal weight, however, needs to
be applied to the two spectral distortions (amplification
and attenuation) for maximum correlation with the
SNRLOSS measure (see Table 5).

5. Comparison of the correlations obtained with the pro-
posed SNRLOSS measure against other conventional
measures revealed that the SNRLOSS measure yielded a
higher correlation than the PESQ and AI-based mea-
sures with sentence recognition scores, but did not per-
form as well as the STI-based measure (NCM).
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6. The squared spectral log difference measure (Eq. (10)),
which is often used to assess speech distortions intro-
duced by speech enhancement algorithms (Cohen and
Gannot, 2008) or vector quantizers (Paliwal and Atal,
1993), yielded the lowest correlation (|r| = 0.26–0.33)
for both consonant and sentence recognition tasks. This
result demonstrates the negative implications of lumping
the amplification and attenuation distortions into one,
as done when the difference between the clean and pro-
cessed magnitude-spectra is squared. This outcome thus
highlights the importance of isolating the two types of
distortions introduced by enhancement algorithms, as
done in the implementation of the SNRLOSS measure.

7. The decomposition of the SNR loss measure into the
intelligibility loss introduced by spectral attenuation
and spectral amplification distortions can serve as a
valuable tool for analyzing the performance (in terms
of intelligibility loss) of enhancement algorithms.

Appendix A

In this Appendix we prove the relationship given in Eq.
(14) between the signal-to-residual noise ratio (SNRES) and
the excitation spectral correlation, r2(m).

First, we assume that the excitation spectra have zero
mean, and that

X̂ ðj;mÞ ¼ X ðj;mÞ þ Rðj;mÞ ð17Þ

where X̂ ðj;mÞ is the enhanced spectrum and R(j, m) de-
notes the residual excitation spectrum in the jth band.
We further assume that X(j, m) and R(j, m) are uncorre-
lated, i.e., that E[X(j, m) � R(j, m)] = 0. After dropping the
band and frame indices (j, m) for convenience, we compute
the normalized correlation between X and X̂ as follows:

r2 ¼ ðE½X̂ � X �Þ
2

r2
X � r2

X̂

ð18Þ

where r2
X denotes the variance of X and r2

X̂
denotes the var-

iance of X̂ . Substituting Eq. (17) into the above equation,
we get:

r2 ¼ ðE½ðX þ RÞ � X �Þ2

r2
X � ðr2

X þ r2
RÞ
¼ ðE½X 2�Þ2

r2
X � ðr2

X þ r2
RÞ
¼ ðr2

X Þ
2

r2
X � ðr2

X þ r2
RÞ

¼ r2
X

r2
X þ r2

R

¼ SNRES

SNRES þ 1
ð19Þ

where SNRES,r2
X=r

2
R is the signal-to-residual noise ratio.

Solving for SNRES in the above equation, yields Eq. (14).
Note that a similar equation was derived in (Benesty
et al., 2008), but based on the normalized correlation be-
tween the clean and noisy signals, rather than the clean
and enhanced signals.

In practice, the excitation spectra X and X̂ have non-
zero means, which we denote by lX and lX̂ respectively.
Consequently, we have:
E½X 2� ¼ r2
X þ l2

X ; E½X̂ 2� ¼ r2
X̂ þ l2

X̂ ; E½R2� ¼ r2
R þ l2

R

r2
X̂ ¼ E½X̂ 2� � l2

X̂ ¼ E½X 2� þ E½R2� � l2
X̂ ¼ r2

X þ l2
X þ r2

R

þ l2
R � l2

X̂

ð20Þ
and the normalized covariance between X and X̂ becomes:

r2
l ¼

cov2ðX ; X̂ Þ
r2

X r2
X̂

¼ ðE½X � X̂ � � lX lX̂ Þ
2

r2
X r2

X̂

¼ ðr2
X þ l2

X � lX lX̂ Þ
2

r2
X ðr2

X þ l2
X þ r2

R þ l2
R � l2

X̂
Þ ð21Þ

After some algebraic manipulation and utilizing the follow-
ing new definition of SNRES which accounts for the non-
zero means:

SNRES ¼
E½X 2�
E½R2�

¼ r2
X þ l2

X

r2
R þ l2

R

ð22Þ

we get:

r2
l ¼

SNRES þ C
SNRES þ 1� D

ð23Þ

where the terms C and D are given by:

C ¼ l4
X

r2
X ðr2

R þ l2
RÞ
þ l2

X

r2
R þ l2

R

þ ðlX̂ lX Þ
2

r2
X ðr2

R þ l2
RÞ

� 2
lX̂ lX

ðr2
R þ l2

RÞ
1þ l2

X

r2
X

� �
ð24Þ

D ¼
l2

X̂

r2
R þ l2

R

ð25Þ

It is clear from Eqs. (24) and (25), that if lX ¼ lX̂ ¼ 0, then
Eq. (23) reduces to Eq. (19). Solving for SNRES in Eq. (23),
we get:

SNRES ¼
r2
lð1� DÞ � C

1� r2
l

ð26Þ
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