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Selective-Tap Blind Dereverberation
for Two-Microphone Enhancement

of Reverberant Speech
Kostas Kokkinakis, Member, IEEE, and Philipos C. Loizou, Senior Member, IEEE

Abstract—In this letter, we propose a novel approach for two-
microphone enhancement of speech corrupted by reverberation.
Our approach steers computational resources to filter coefficients
having the largest impact on the error surface and therefore only
updates a subset of coefficients in every iteration. Experimental re-
sults carried out in a realistic reverberant setup indicate that the
performance of the proposed algorithm is comparable to the per-
formance of its full-update counterpart.

Index Terms—Blind dereverberation, least-mean-square (LMS),
perceptual evaluation of speech quality (PESQ), selective-tap filter
updating, SIMO-FIR model.

I. INTRODUCTION

A COUSTIC reverberation is caused by multiple reflections
and diffractions of sounds on the walls and objects in en-

closed spaces. Reverberation is harmful to speech intelligibility
since it blurs temporal and spectral cues, flattens formant tran-
sitions, reduces amplitude modulations associated with the fun-
damental frequency of speech and increases low-frequency en-
ergy, which in turn results in masking of higher speech frequen-
cies [1]. Blind reverberation cancelation or dereverberation is
a well-known technique, based on which we can reconstruct an
estimate of a speech signal distorted by reverberation with no
prior knowledge of the signal itself or the acoustical properties
of the room [2]. To isolate the original or “true” source signal
in a multipath propagation scenario, one needs to rely solely on
information that can be collected from the microphones.

Gannot and Moonen [3] were the first to propose a mul-
timicrophone dereverberation technique using a generalized
singular-value decomposition (GSVD) approach. Nakatani and
Miyoshi [4] achieved speech dereverberation by extraction
of the harmonic components of clean speech after filtering
the reverberant signal through a pre-trained harmonic filter.
Wu and Wang [5] proposed to maximize the kurtosis of the
linear prediction (LP) residual of the original clean speech and
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then to use a spectral subtraction algorithm to decrease late
reverberation. Lee et al. [6] resorted to a binaural (two-channel)
model to reformulate the problem of blind dereverberation as a
single-input multiple-output (SIMO) inverse filtering problem.
Jointly reducing spectral coloration due to late reverberant
energy as well as background noise for speech enhancement in
practical applications has also been the focus of other recent
single- and multichannel speech dereverberation strategies
(e.g., see [7]–[9]). The aforementioned dereverberation strate-
gies perform well, as long as large amounts of processing
power and training data can be made available. However, since
most algorithms require a large number of taps to capture room
impulse responses and since their computational complexity
and processing delays are proportional to the tap length used,
they are prohibitively expensive for use in practical applications
(e.g., hearing aids).

In this letter, we derive a novel blind single-input two-output
reverberant speech enhancement strategy, which stems from
the multichannel least-mean-square (MCLMS) algorithm [10].
The proposed method uses second-order statistics to identify
the acoustic paths in the time-domain and relies on a novel se-
lective-tap criterion to update only a subset of the total number
of filter coefficients in every iteration. Therefore, it substan-
tially reduces computational requirements with only minimal
degradation in dereverberation performance. The potential of
the proposed low-complexity algorithm is verified and assessed
through numerical simulations in realistic acoustical scenarios.

II. PROBLEM FORMULATION AND ALGORITHM

Consider the paradigm shown in Fig. 1 where speech is
picked up by the two microphones of a hearing aid device. Let

represent the sound source, and denote the
impulse responses of the two acoustic paths modeled using
finite impulse response (FIR) filters and and be
the reverberant signals captured by the two microphones of the
device. In the noiseless two-microphone scenario, we exploit
the correlation between the output signals of each microphone

(1)

where denotes linear convolution and , 2. From (1)
and for all , it follows that

(2)
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Fig. 1. Typical SIMO hearing aid setup, in which the two signals picked up
by the directional (front) and omni-directional (rear) microphones are used to
adaptively cancel the reverberation present in the background.

A. Multichannel LMS Algorithm

As shown in [10], an intuitive way to ’blindly’ calculate the
unknown acoustic paths is to minimize a cost function that pe-
nalizes correlated output signals between the th and th sen-
sors1, such that

(3)

After rewriting (2) in vector notation, the error function
in (3) can be further expanded to

(4)

defined for all , 2 and , where denotes vector
transpose, vector repre-
sents the estimate of the time-invariant impulse response of the
th microphone at time instant of order and

(5)

is the corrupted (reverberant) speech picked up by the th mi-
crophone. Accordingly, the update equation of the time-domain
multichannel least-mean-square (MCLMS) algorithm is given
by [10]

(6)

(7)

(8)

where is the learning parameter controlling the rate
of convergence and speed of adaptation, is the ( )
composite channel response vector formed by the two separate
channel coefficient vectors, such that

(9)

1To guarantee identifiability for the SIMO-FIR system described in (2), the
two impulse responses � ��� and � ��� must be co-prime, namely they must
share no common zeros and moreover the autocorrelation matrix of the source
signal� � � ����� � ���� needs to be of full rank.

and is the autocorrelation matrix of the mi-
crophone signals, which is equal to

(10)

with valid for all , 2.

B. Selective-Tap Two-Channel LMS Algorithm

We formulate the new selective-tap approach based on the
two-microphone configuration depicted in Fig. 1. By inspecting
(6)–(8) we can see that as the adaptive algorithm approaches
convergence, the cost function diminishes and its gra-
dient with respect to becomes

(11)

after removing the unit-norm constraint from (8). From the
above equation, it readily becomes evident that the convergence
behavior of the MCLMS algorithm depends solely on the
magnitude (element-wise) of the autocorrelation matrix
estimated at each iteration . The computational complexity
and slow convergence of the MCLMS algorithm can be there-
fore reduced substantially by employing a simple tap-selection
criterion to update only out of coefficients containing the
largest values of the autocorrelation matrix [11]. The subset of
the filter coefficients updated at iteration can be determined
from the matrix , which is coined the tap-selection
matrix

. . .
...

...
. . .

(12)

where each element is given by

(13)

such that

otherwise
(14)

where in a two-channel setup (12)–(14) are defined for 1,
2 and for all lags and the operator
denotes absolute value. In order to calculate the different filter
coefficients that are to be updated at different time instants, a
fast sorting routine (e.g., see SORTLINE [12]) is executed at
every iteration. After sorting, each block of the tap-selection ma-
trix contains coefficients equal to one in the positions
(or indices) calculated from (14) and zeros elsewhere, such that

with , where denotes the sum of
the diagonal elements of matrix . To update only taps
of the equalizer , we write the selective-tap two-channel
least-mean-square (SETA-TCLMS) algorithm as follows:

(15)
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where the update is carried out with learning rate only if
corresponds to one of the first maxima of , whereas
when then (15) becomes

(16)

where . Note that for
, the SETA-TCLMS reduces to the full-update algo-

rithm described in (6)–(8).

III. EXPERIMENTAL RESULTS

The performance of the SETA-TCLMS algorithm is evalu-
ated using sentences produced by five different speakers (three
male and two female). The speech sources are approximately
10 s in duration and are recorded at a sampling rate of 8 kHz.
All signals are taken from the IEEE database, which consists of
phonetically balanced sentences, with each sentence being com-
posed of approximately seven to 12 words [13]. Reverberant
speech is generated by convolving “clean” speech with room
impulse responses measured inside a 5 9 3.5 m office using
an experimental two-microphone hearing aid device mounted
behind the ear of a KEMAR positioned at 1.5 m above the floor
and at ear level [14].

The length of the acoustic impulse responses is approx-
imately 1920 sample points and the reverberation time2 is
equal to in the 20–4000 Hz frequency band,
which is a typical value encountered in most daily reverberant
environments. All numerical simulations are carried out for
a single-source and a two-microphone configuration. The
SETA-TCLMS algorithm is executed with , whereas
the tap-selection length is set to 2,048, 1,024, and 512 taps.
The learning rates are explicitly tuned to yield the maximum
possible steady-state performance. The enhanced speech is
obtained by convolving the reverberant speech with the inverse
of each estimated impulse response upon convergence.

A. Performance Evaluation

1) NPM: Since, in our experimental setup the acoustic
channel impulse responses are known a priori the channel
identification accuracy is calculated using the normalized
projection misalignment (NPM) metric [10]

(17)

with and the projection misalignment

(18)

where for perfectly identified acoustic paths
2) Perceptual evaluation of speech quality (PESQ): Al-

though the NPM metric can measure channel identification
accuracy reasonably well, it might not always reflect the output

2� defines the interval in which the reverberating sound energy, due to de-
caying reflections, reaches one millionth of its initial value. In other words, it
is the time it takes for reverberation to drop by 60 dB below the original sound
energy present in the room at any given instant.

TABLE I
DEREVERBERATION PERFORMANCE FOR FIVE SPEAKERS AVERAGED ACROSS

BOTH MICROPHONES. ALL VALUES OBTAINED AFTER CONVERGENCE

speech quality. For that reason, we also assess the performance
of the proposed algorithm using the PESQ [15]. The PESQ
employs a sensory model to compare the original (unprocessed)
with the enhanced (processed) signal, which is the output from
the dereverberation algorithm, by relying on a perceptual model
of the human auditory system. In the context of additive noise
suppression, PESQ scores have been shown to exhibit a high
Pearson’s correlation coefficient of with subjective
listening quality tests [16]. The PESQ measures the subjective
assessment quality of the dereverberated speech rated as a value
between 1 and 5 according to the five grade mean opinion score
(MOS) scale. Here we use a modified PESQ measure [16],
referred to as , with parameters optimized towards
assessing speech signal distortion, calculated as a linear com-
bination of the average disturbance value and the average
asymmetrical disturbance values [15], [16]

(19)

such that

(20)

By definition, a high value of indicates low speech
signal distortion, whereas a low value suggests high distortion
with considerable degradation present. In effect, the
score is inversely proportional to reverberation time and is ex-
pected to increase as reverberant energy decreases.

B. Discussion

Table I contrasts the performance of the SETA-TCLMS al-
gorithm relative to the performance of its full-update counter-
part (see Section II-B). As it can be seen in Table I, the full-up-
date TCLMS yields the best NPM performance and the highest

scores. Still, the degree of dereverberation remains
largely unchanged when updating with the SETA-TCLMS using
only filter coefficients. In fact, even when em-
ploying just taps, which accounts for a 75% reduction
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in the total equalizer length (with a processing delay of just 64
ms at 8 kHz) the algorithm can estimate the room impulse re-
sponses with reasonable accuracy.

In terms of overall speech quality and speech distortion, the
score for the reverberant (unprocessed) speech sig-

nals, averaged across all five speakers and in both microphones,
is equal to 2.72, which suggests that a relatively high amount
of degradation is present in the microphone inputs. In contrast,
after processing the two-microphone reverberant input signals
with the SETA-TCLMS algorithm, the average scores
increase to 4.17, 3.62 and 3.40 when using , 1,024
and 512 taps, respectively. The estimated values sug-
gest that the proposed SETA-TCLMS algorithm can improve
the speech quality of the microphone signals considerably, while
keeping signal distortion to a minimum.

IV. CONCLUSIONS

We have developed a selective-tap blind identification scheme
for reverberant speech enhancement using a two-microphone
configuration. Numerical experiments carried out with speech
signals in a moderately reverberant setup, indicate that the
proposed two-channel dereverberation technique is capable
of equalizing fairly long acoustic echo paths with sufficient
accuracy and nearly no degradation. The proposed adaptive
algorithm exhibits a low computational overhead and therefore
is amenable to real-time implementation in portable devices
(e.g., hearing aids).
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