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Objectives: The aim of this study is to assess the
influence of the shape of the acoustic-to-electric
mapping function on speech recognition in noise by
cochlear implant listeners.

Design: A new acoustic-to-electric mapping func-
tion is proposed for cochlear implant users in noisy
environments. The proposed s-shaped mapping
function was expansive for low input levels up to a
knee point level and compressive thereafter. The
knee point of the mapping functions changed dy-
namically and was set proportional to the estimated
noise floor level. The performance of the mapping
function was evaluated on a sentence recognition
task using IEEE sentences embedded in �5 to 10 dB
SNR multitalker babble and in �5 dB SNR speech-
shaped noise. Nine postlingually deafened cochlear
implant users participated in the study.

Results: Results indicated that the same s-shaped
mapping function did not yield significant improve-
ments for all cochlear implant users. Significant
benefits in speech intelligibility were observed,
however, when the s-shaped mapping function was
optimized to individual cochlear implant users. Sig-
nificantly higher performance was achieved with
the s-shaped mapping functions than the conven-
tional log mapping function used by cochlear im-
plant users in their daily strategy, in both multi-
talker (�5 and �10 dB SNR) and continuous speech-
shaped (�5 dB SNR) conditions.

Conclusions: These results clearly indicate that the
shape of the nonlinear acoustic-to-electric mapping
can have a significant effect on speech intelligibil-
ity in noise when it is optimized to individual co-
chlear implant users. The log functions currently
used in most implant processors for mapping acous-
tic to electric amplitudes are not the best mapping
functions to use in noisy environments. This is
largely because compressive functions tend to am-
plify low-level segments of speech along with noise,
thereby decreasing the spectral contrast and effec-
tive dynamic range. In contrast, the s-shaped map-
ping functions, which are partly compressive and
partly expansive depending on the signal level, are
more suitable for noisy environments and can pro-
duce significantly higher performance than the log-
mapping functions.

(Ear & Hearing 2007;28;402–411)

The compression of envelope amplitudes is an
essential component of cochlear implant processors
because it is used in the transformation of acoustic
amplitudes into electrical amplitudes. This transfor-
mation is necessary because the range in acoustic
amplitudes in conversational speech is considerably
larger than the cochlear implant user’s electrical
dynamic range. In conversational speech, the acous-
tic amplitudes may vary within a range of 30 to 50
dB (Boothroyd, Erickson & Medwetsky, 1994; Zeng,
Grant, Niparko, Galvin, Shannon, Opie & Segel,
2002). Implant listeners, however, may have a dy-
namic range as small as �5 dB. For that reason, the
cochlear implant processors compress, using a non-
linear compression function, the acoustic ampli-
tudes to fit the user’s electrical dynamic range. The
logarithmic function is commonly used for compres-
sion because it matches the loudness between acous-
tic and electrical stimulation (Eddington, Dobelle,
Brachman, Mldadevosky & Parkin, 1978; Zeng &
Shannon, 1992), that is, it restores normal loudness
growth.

The effect of the shape of the compression func-
tion on speech recognition has been investigated in a
number of studies (Fu & Shannon, 1998, 1999; Loizou,
Poroy & Dorman, 2000; Wilson, Lawson, Zerbi &
Wolford, Reference Note 1; Zeng & Galvin, 1999).
Loizou et al. (2000) modified the shape of the ampli-
tude mapping functions from strongly compressive
to weakly compressive (nearly linear) by varying the
exponent of a power-law function. The shape of the
compression function had only a minor effect on
speech recognition in quiet, with the lowest perfor-
mance obtained for nearly linear mapping functions.
Similar findings were also reported by Zeng and
Galvin (1999) and Fu & Shannon (1998, 1999). The
effect of the shape of the compression function on
speech recognition in noise was investigated by Fu &
Shannon (1999). While a strongly compressive map-
ping between acoustic and electric amplitudes pro-
duced better performance in quiet, a less compres-
sive mapping was sometimes more beneficial in
noise.

The above studies considered only logarithmic-
shape functions for mapping acoustic to electrical
amplitudes. These functions are compressive for the
most part, and as such, tend to amplify low-level
signals. Use of compressive functions for transform-
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ing acoustic to electrical amplitudes ought to be
beneficial in quiet as it renders soft sounds audible
to cochlear implant users. It is therefore not surpris-
ing that cochlear implant users perform, at least in
quiet, very well with logarithmic mapping functions.
The situation in noise, however, is quite different.
Compressive functions amplify both noise and weak
speech segments making segregation of speech from
noise extremely difficult. This assertion was corrob-
orated by Fu & Shannon (1999), who found out that
performance declines dramatically in noise with
strongly compressive functions.

The benefits and limitations of compression have
been studied extensively in the hearing-aid litera-
ture (see review in Hohmann & Kollmeier, 1995;
Hornsby & Ricketts, 2001; Levitt, 2004; Yund &
Buckles, 1995), but the conclusions have been less
than clear. Some (e.g., Plomp, 1988) have argued
that compression in general may be detrimental to
speech intelligibility due to its effect on the modula-
tion spectrum as quantified by the speech transmis-
sion index (STI). Others (Noordhoek & Drullman,
1997; Villchur, 1989) have argued that the reduction
in intelligibility in noise can not be attributed to the
reductions in envelope modulations alone but may
occur because the weaker elements of speech are
masked. Villchur (1973) showed that the weak ele-
ments of speech can be preserved to some degree
with two-band compression. He further demon-
strated that speech intelligibility in noise can be
improved with two-band compression despite reduc-
tion in modulation depth caused by compression
(Villchur, 1973).

Compared with the use of compression in hearing
aids, considerably less work has been done to study
the influence of the shape of the compression func-
tion on speech recognition in noise by cochlear
implant listeners. In the present study, we examine
the performance of a new amplitude mapping func-
tion which may be potentially more suitable for
noisy environments than the conventional log com-
pressive function. The proposed mapping function is
partly compressive and partly expansive, and has

the shape of the letter S; hence, we refer to it as the
“s-shaped” function.

The motivation behind the use of s-shaped func-
tions is to suppress the signal falling below the noise
floor (and likely dominated by noise) while retaining
the signal above the noise floor (and likely domi-
nated by speech). This can be accomplished by the
use of an expansive function for signal levels falling
below the noise floor and a compressive function for
signal levels falling above the noise floor level. The
expansive segment of the function serves as a signal
attenuator, as it suppresses low-amplitude signals,
while the compressive segment serves as a signal
amplifier, as it amplifies low-amplitude signals. The
change from expansive to compressive function oc-
curs at the knee point of the s-shaped input-output
function. This knee point is not fixed, but rather
adapted from cycle to cycle to the current estimate of
the noise floor. Key to the application of the pro-
posed mapping functions is the choice of the knee
point, which in the present study was set to the
noise floor level estimated using an algorithm. More
specifically, a noise estimation algorithm (Ranga-
chari & Loizou, 2006) is used to track continuously
the noise floor in each band and adapt the knee-
point accordingly. The influence of the placement of
the knee-point as well as the shape of the function
(compressive versus expansive) used for low input
signal levels, is evaluated in the present study on
recognition of speech in noise by cochlear implant
users.

METHODS

Subjects

Nine cochlear implant recipients wearing the
Clarion CII (Advanced Bionics Corporation) proces-
sor participated in this Experiment. All subjects
were postlingually deafened adults and had used the
cochlear implant for a minimum of 3 yr. The bio-
graphical data for the nine subjects is presented in
Table 1. Subjects S3 and S8 were not available for
testing in all conditions.

TABLE 1. Biographical data for the nine cochlear implant users tested

Subject Sex Age (yr)
Years of experience

with cochlear implant
IEEE sentence recognition

in quiet (% correct)
Pulse rate

(pps/channel) Etiology

S1 Female 49 4 96 2840 Otosclerosis
S2 Female 36 6 96 976 Unknown
S3 Female 59 3 87 2840 Medication
S4 Female 52 3 93 2840 Unknown
S5 Female 46 4 90 2840 Unknown
S6 Male 69 4 88 2840 Unknown
S7 Female 38 4 87 2840 Hereditary
S8 Female 58 4 59 976 Unknown
S9 Female 61 3 90 2840 Medication
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Sentence Material

Subjects were tested on sentence recognition. The
sentence material consisted of several lists of pho-
netically-balanced IEEE sentences (IEEE Subcom-
mittee, 1969). Twenty sentences (two lists) were
used per condition. Two types of noise were used to
corrupt the IEEE sentences: speech-shaped noise
and multitalker babble. The (continuous) speech-
shaped noise was taken from the HINT database
(Nilsson, Soli & Sullivan, 1994) and the multitalker
babble (10 male and 10 female talkers) was taken
from the Auditec CD (St Louis, Mo).

Signal Processing

Speech material was first band-pass filtered into
16 logarithmically-spaced frequency bands using
sixth-order Butterworth filters that spanned the
frequency range from 350 Hz to 5500 Hz. The output
of each channel was passed through a full-wave
rectifier followed by a second-order Butterworth
low-pass filter with a cutoff frequency of 200 Hz to
obtain the envelope of each channel. The channel
envelope amplitudes were finally compressed ac-
cording to various mapping functions (described
next) and delivered to the electrodes using the
subject’s daily strategy. All subjects were fitted with
a high-rate CIS strategy, based on the parameters
(e.g., pulse width, pulse rate) used in their daily
processor. Speech material was processed off-line
and delivered directly to the cochlear implant users
via the Clarion Research Interface II hardware
(Loizou, Stickney, Mishra & Assmann, 2003).

The s-shaped mapping of acoustic amplitudes to
electrical amplitudes involved two steps. The first
step estimated the noise floor level using a noise-
estimation algorithm. Note that unlike voice-activ-
ity detection algorithms, noise estimation algo-
rithms track the noise amplitude continuously, even
during speech-active segments. The second step con-
structed the s-shaped mapping function based on
the noise-floor level estimated in the first step.
Estimating the Noise Envelope Amplitude • Since
the characteristics of the two types of noise (contin-
uous speech-shaped noise and multitalker babble)
used in our study differ, we used two different
methods for estimating the noise envelope. For the
speech shaped noise, which is stationary, the noise
envelope was computed using the initial 120 msec of
speech-absent segment preceding the sentences.
More specifically, the noise envelopes in each channel
were computed by averaging, over the initial 120-msec
segment, the envelopes computed via bandpass filter-
ing and full-wave rectification. Due to the stationary
nature of the noise, the same noise envelope ampli-
tudes were used for all subsequent segments.

A different method was used for tracking the noise
envelope of multitalker babble. This method was
adapted from Rangachari & Loizou (2006) and is
described in detail in Appendix A. The noise estima-
tion algorithm tracks and updates the noise envelope
continuously (i.e., in every cycle) taking into account
the highly nonstationary nature of multitalker babble.
This algorithm tends to underestimate the amplitude
of the noise envelope, as it is based on minimum
tracking (Rangachari & Loizou, 2006). For that rea-
son, we applied a bias factor (�1) to the estimated
noise envelope amplitude to artificially increase the
noise floor level. More specifically, if D��, k� is the
noise envelope amplitude computed at time � for
channel k by the noise estimation algorithm (see Eq.
(15) in Appendix A), then we used the following biased
estimate of the noise envelope:

D̂(�, k) � b · D(�, k) (1)

where b is the bias factor, D��, k� is the noise envelope
amplitude estimated using Eq. (15) and D̂��, k� is the
biased estimate of the noise envelope amplitude.
The bias factor is used as a parameter for control-
ling the amount of noise suppression applied. In our
experiments, we considered three different values for b:
b � 1, b � 2 and b � 2.8. Use of b � 1 sets the noise floor
at a low value resulting in a relatively weak sup-
pression of the noise. The other two values of b
(b � 2 and b � 2.8) set the noise floor to a relatively
higher value leading to more aggressive suppression of
the noise. The range (1 to 2.8) of b values was based on
pilot data collected with a few cochlear implant users.

Figure 1 shows an example of noise envelope
estimation for a sentence corrupted in �10 dB SNR
multitalker babble. Only the noise envelope ampli-
tude of channel 3 (centered at 540 Hz) obtained with
b � 1 in Eq. (1) is shown in this example. The true
noise envelope is superimposed for comparative pur-
poses. As can be seen, the noise estimation algo-
rithm is capable of tracking, for the most part,
sudden changes of the background noise envelope.
Construction of S-shaped Mapping Func-
tion • The estimated noise envelope amplitude
D̂��, k� [Eq. (1)] was subsequently used to construct
the s-shaped mapping function. More precisely, the
knee-point of the s-shaped function was set equal to
the estimated noise envelope amplitude D̂��, k�.
The proposed s-shaped mapping function is shown
and compared with a standard log mapping function
in Figure 2. It consists of the following compressive
function for input levels larger than the knee-point:

y1 � A1xp1 � B1 (2)

where p1 � �0.0001 for logarithmic compression
(Loizou et al., 2000), x is the acoustic amplitude and
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y1 is the electrical amplitude. For input levels
smaller than the knee-point, the following expansive
function is used:

y2 � A2xp2 � B2 (3)

where p2 � 1.8 and the coefficients Ai, Bi are chosen
to ensure that the input acoustic range �1, X

max
� is

mapped to the electrical dynamic range [THR,
MCL], where Xmax is the largest acoustic amplitude,
MCL is the most comfortable loudness level and

THR is the threshold level of electric hearing ex-
pressed in microamperes. The coefficients
A1, B1, A2 and B2 are determined according to the
following equations:

A1 � (MCL � THR)/(Xmax
p1 � 1) (4)

B1 � (THR � A1) (5)
A2 � (Yknee � THR)/(Kp2 � 1) (6)

B2 � (THR � A2) (7)
Yknee � A1Kp1 � B1 (8)

where K is the knee-point [set in our case to the
noise floor level, that is, K � D̂��, k� estimated as
per Eq. (1)] and Yknee is the electrical amplitude
corresponding to the knee point (assuming log com-
pression). It is interesting to note that the log-
mapping function is a special case of the s-shaped
function when the knee-point is set at b � 0.

Figure 3 shows examples of envelope amplitudes
produced using the s-shaped mapping function
(b � 2 and b � 2.8) and the log-mapping function for
a segment of a sentence corrupted in �10 dB SNR
multitalker babble. Only the envelope amplitudes of
channel 3 (centered at 540 Hz) are shown in this
example. It is clear that noise primarily affected the
envelope valleys, with little effect on the envelope
peaks. The s-shaped mapping functions suppressed
the noise in the valleys while preserving the peaks of
speech. Stronger noise suppression was achieved
with b � 2.8 than with b � 2. Also, compared with
the envelopes obtained with the log mapping function,

Fig. 1. Bottom panel shows the en-
velopes (thin lines) of noise (multi-
talker babble at �10 dB SNR) and
the estimated noise envelopes
(thick lines) obtained using a noise-
estimation algorithm. For better
clarity, the top panel shows the
envelopes of the noise alone prior
to adding it to a sentence at �10 dB
SNR. The noise envelopes were ex-
tracted after bandpass filtering
(channel 3, centered at 540 Hz),
full-wave rectifying and low-pass
filtering (200 Hz) the noise signal.
The envelopes were subsequently
mapped with a log function to the
subject’s electrical dynamic range.
The estimated noise envelope (thick
line, bottom panel) was computed
using the algorithm given in Appen-
dix A, with b � 1 as the bias factor.

Fig. 2. The proposed s-shaped input-output function consist-
ing of a log compressive function for input levels above the
knee point and an expansive function for input levels below
the knee point.
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a better temporal envelope contrast was achieved with
the s-shaped mapping functions.

Procedure

The cochlear implant subjects were tested with
the Clarion research interface-II hardware using
similar experimental setup as in Loizou et al. (2003).
Sentences were processed off-line with the various
s-shaped input-output functions and presented to
the subjects directly at a comfortable level through
the Clarion research interface-II. The comfortable
level was adjusted separately for each condition by
the implant users. The subjects were instructed to
write down the words they heard. A practice session
with ten sentences presented in quiet was used in
the beginning. The practice session lasted for 5 to 10
minutes. After the practice session, the subjects
were tested on the various conditions incorporating
the different input-output functions. Speech-shaped
noise was added to the IEEE sentences at �5 dB
SNR, and multitalker babble was added to the
sentences at �5 and �10 dB SNR. Speech-shaped
noise was added only at �5 dB SNR, as we observed
ceiling effects at �10 dB with most of our subjects.
Three different values of the bias factor were con-
sidered: b � 1, b � 2 and b � 2.8, yielding three
different knee-point conditions for the s-shaped in-
put-output functions. The log mapping function used

in the subject’s daily processor was also tested as the
control condition. The order of the various test
conditions was randomized among subjects to avoid
order effects. Twenty sentences were used for each
test condition.

RESULTS

Performance was assessed in terms of percent of
words identified correctly (all words were scored).
The individual subjects’ scores on sentence recogni-
tion are shown in Figure 4 for the s-shaped mapping
functions constructed using three different values of
the bias factor [Eq. (1)]. Two-way ANOVA (repeated
measures) with SNR and location of knee-point (bias
factor) as within subject factors indicated a nonsig-
nificant effect of the location of knee-point [F(3, 18) �
2.027, p � 0.146], a significant effect of SNR
[F(1, 6) � 127.4, p � 0.0005] and a nonsignificant
interaction [F(3, 18) � 2.206, p � 0.123] between
knee point and SNR. The scores obtained with the
log-mapping function were also included in the
ANOVA, as the log-mapping function can be consid-
ered as a special case of the s-shaped mapping
function with the bias factor in Eq. (1) set to b � 0.

The above statistical analysis (ANOVA) indicated
a nonsignificant effect of the location of knee-point of
the s-shaped input-output function on speech intel-
ligibility. This suggests that if we were to fit all
cochlear implant users with the same s-shaped map-

Fig. 3. Top panel shows the enve-
lopes computed for channel 3
(centered at 540 Hz) for the seg-
ment “the kite” excerpted from
the IEEE sentence “The kite flew
wildly in the high wind.” The log
function was used for mapping
the acoustic to electrical ampli-
tudes. Bottom two panels show
the envelopes extracted using the
s-shaped input-output function
(thick line) with b � 2 (middle
panel) and b � 2.8 (bottom panel)
for the same IEEE sentence cor-
rupted in �10 dB multitalker bab-
ble. The envelope amplitudes ob-
tained using the log mapping
function (thin line) are overlaid
for comparative purposes.
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ping function constructed using the same bias factor
(i.e., same knee-point value), then we would not
observe any benefit in speech intelligibility. While
that is highly desirable in clinical applications (for
ease of fitting), the above analysis does not take into
account the inherent variability among cochlear
implant users owing to differences in etiology, pat-
terns of neuron survival, and so forth. The underly-
ing peripheral physiological differences in cochlear
implant users are partly responsible for the ob-
served differences in performance. Indeed, from Fig-
ure 4 we observe that the individual subjects’ per-
formance varied across the three values of the knee
point tested. The “best” knee-point value, in terms of
intelligibility improvement, differed across subjects.
The majority (6 of 9) of the cochlear implant users
performed the best with b � 2 at �10 dB SNR
(babble), but there was much variability among

subjects in the “best” knee-point value for the �5 dB
SNR babble and steady-state noise conditions.

The data in Figure 4 suggest that it might be
possible to optimize the s-shaped function (in terms
of the location of the knee-point) to individual co-
chlear implant users for better performance. While
such a tuning can not be done, at this point, auto-
matically via an algorithm or by using a psychophys-
ical procedure, it can be done manually by trying out
different knee-point values and choosing the value
that works the best for each user. We refer to that
value as the “best” knee-point value for a particular
cochlear implant user. To determine whether such a
tuning would yield statistically significant benefits
to intelligibility, we subjected the scores obtained
with the “best” knee point value (bias factor) for each
cochlear implant user into a different ANOVA. We
summarize in Figure 5 the mean scores obtained in
the various SNR conditions for the two types of
maskers, after selecting the best knee-point value of
each subject. These scores are compared against
those obtained with the log-mapping functions used
in the subject’s daily processors. The mean scores
obtained with the optimized s-shaped mapping func-
tion were found to be significantly higher than the
scores obtained with the log-mapping functions in
�5 dB SNR speech shaped noise [F(1, 8) � 15.85,
p � 0.004], in �5 dB SNR multitalker babble
[F(1, 7) � 21.89, p � 0.002] and in �10 dB SNR
multitalker babble [F(1, 8) � 30.51, p � 0.001].

Fig. 4. Individual subject’s scores (percent words identified
correctly) for recognition of IEEE sentences embedded in �5
dB speech-shaped noise and �5 to 10 dB multitalker babble
for two types of mapping functions, log and s-shaped. Three
different values of the bias factor (b � 1, b � 2 and b � 2.8)
were considered in the s-shaped mapping function. Subjects
S3 and S8 were not tested in all conditions.

Fig. 5. Mean scores (percent words identified correctly) for
recognition of IEEE sentences embedded in �5 dB speech-
shaped (SS) noise and �5 to 10 dB multitalker babble (MB)
for two types of mapping functions, log and s-shaped. These
scores were computed by averaging the scores obtained with
the “best” knee-point values (Fig. 4) by each cochlear implant
user. Error bars indicate standard errors of the mean. The
error bars reflect the variability in performance after optimiz-
ing the s-shaped function to individual cochlear implant
users, and as such, might underestimate the true variability in
performance with the various knee-point values.
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These results clearly indicate that the shape of the
nonlinear acoustic-to-electric mapping can be tuned
to some degree for individual subjects to obtain
maximum benefit on speech intelligibility in noise.
After such tuning, higher performance can be achieved
with s-shaped mapping functions than log mapping
functions.

DISCUSSION

The results demonstrated that the shape of the
nonlinear acoustic-to-electric mapping function can
yield improved sentence recognition in noise when
the knee values are optimized for individual listen-
ers. The log functions currently used in most im-
plant processors for mapping acoustic to electric
amplitudes are not the best mapping functions for
noisy environments. This is largely because compres-
sive functions tend to amplify low-level segments of
speech along with noise, thereby decreasing the spec-
tral contrast and effective dynamic range. In contrast,
the s-shaped mapping functions, which are partly
compressive and partly expansive depending on the
signal level, are more suitable for noisy environments
and can produce significantly better performance than
the log-mapping functions. Results from this study
demonstrated that the choice of the knee-point in the
s-shaped function is critical and that the optimal knee
value (bias factor), in terms of highest speech recogni-
tion score, varies across subjects.

One factor has possibly contributed to the benefit
of s-shaped mapping functions: improved spectral
contrast. As can be seen in Figure 3, s-shaped
processing preserves the envelope peaks and deep-
ens the valleys, which are otherwise filled for the
most part with noise. The s-shaped function utilizes
selectively the benefits of the compression and ex-
pansion functions. When the signal level is substan-
tially above the noise floor, i.e., during periods that
speech is present (e.g., voiced segments), compres-
sion is at work preserving the peaks and strong
elements of speech. When the speech signal is weak
or absent, as during stop closures, the expansion is
at work suppressing the background noise rather
than boosting it. This selective application of com-
pression and expansion lends itself to improved
spectral contrast, as illustrated in Figure 3. This
figure shows the envelopes obtained with s-shaped
and log functions for the words “the kite” excerpted
from the IEEE sentence “The kite flew wildly in the
high wind.” embedded in �10 dB SNR babble. Note
that the noisy signal is severely attenuated (due to
expansion) during the /k/ and /t/ stop closures
thereby enhancing the peak-to-trough contrast. In
contrast, the signal during the closures is amplified

when log compression is used and the spectral
contrast is subsequently reduced. More precisely, in
this example, the peak-to-trough ratio improved
from roughly 4 dB with the log compression function
to 11 dB with the s-shaped function (see bottom
panel in Figure 3, segments t � 0.23 to 0.33 sec and
t � 0.53 to 0.6 sec). It is also worth noting here that
the relatively weak stop consonant /k/ (segment t �
0.35 to 0.4) was not attenuated with the s-shaped
function.

We speculate that the s-shaped functions improve
spectral contrast without compromising loudness.
While the use of linear mapping functions generally
improves spectral contrast, it is done at the expense
of reducing significantly the loudness of the acoustic
stimuli thereby rendering most speech segments
inaudible or not sufficiently loud. Several studies
(e.g., Fu & Shannon, 1998) have confirmed that any
dramatic deviation from a power-law (log type) com-
pressive function will deteriorate performance. The
s-shaped functions maintain the log mapping func-
tion for input levels above the estimated noise floor
(knee-point). As such, they preserve the loudness of
signals falling above the noise floor while reducing
the loudness of signals falling below the knee-point
and possibly dominated by noise.

S-shaped functions suppress the signal falling
below the knee-point assumed to contain primar-
ily noise. It is reasonable to ask why suppress and
not annihilate (e.g., zero out) any signal falling
below the knee point. One would expect that that
would provide better suppression of the noise. We
do not believe that is true for two main reasons.
First, eliminating the signal falling below the
knee-point (noise floor) would be a reasonable, and
perhaps a better, approach provided that we are
somehow capable of estimating the noise level
(knee point) very accurately. That is not the case
in practice, as the noise level constantly changes,
and the best we can do is to estimate, at least
conservatively, the noise floor level. Any errors in
overestimating the noise floor level would wipe
out segments of speech containing useful informa-
tion thereby degrading intelligibility. Second, the
frequent switching from signal-on to signal-off
across and within each channel would produce
undesirable distortion effects. Hence, suppressing
rather than zeroing out the signal falling below
the knee point seems to be a safer approach. There
is also evidence from intelligibility studies (Drul-
lman, 1995) suggesting that while removing noise
from the envelope peaks has no effect on intelligi-
bility, removing the speech signal from the noisy
(envelope) valleys can produce a decrement in
intelligibility. Hence, weak speech segments fall-
ing below the noise level do contribute to intelli-
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gibility and cochlear implant users are somehow
able to utilize this information.

It is interesting to note that the input-output
function of the normal cochlea is level-dependent
much like the proposed s-shaped input-output func-
tion. It is known, for instance, that the compressive
action of outer hair cells does not operate at very low
(and very high) input levels (see review in Cooper,
2004; Ruggero, Rich, Recio, Narayan & Robles,
1997). More specifically, the basilar membrane’s
input-output function is linear at low intensity lev-
els up to breakpoint level (knee-point), and becomes
compressive thereafter. It is also linear at high input
levels. This has prompted hearing aid companies to
adopt similar input-output functions with linear
mapping for low and extremely high input levels,
and compressive mapping for intermediate (conver-
sational level) levels (Dillon, 2001). Unlike the in-
put-output functions used in hearing aids, which are
based on fixed knee-point levels (around 50 dB SPL),
the proposed input-output function changes its knee
point adaptively, at least in constantly changing
noise environments (e.g., multitalker babble).

The construction of the proposed acoustic-to-elec-
tric mapping functions depends on the choice of the
knee-point, which is critically important. If the
knee-point is overestimated, then weak consonants
(e.g., /f/, /s/) might be heavily attenuated; possibly
diminishing speech intelligibility. But, as shown in
the examples in Figure 1 and 3, that was rarely the
case. On the other hand, if the knee-point is under-
estimated, then too little noise will be suppressed
yielding a reduced benefit in intelligibility. Clearly,
the effect of underestimating the knee-point is less
severe as the resulting mapping function resembles
that of the log function used in the user’s daily
processor. In our study, the knee-point was adjusted
according to the estimate of the noise floor (see Fig.
2), hence, much of the success of the s-shaped
mapping function can be attributed to the relatively
accurate estimates of the knee-point (noise floor).
We expect larger improvements in performance with
more accurate estimates of the noise floor level, and
therefore better estimates of the knee point. Further
research is therefore needed to improve the accuracy
and speed (e.g., adaptation time) of noise tracking
algorithms.

Comparing the performance of cochlear implant
users on the two types of maskers used (steady-state
speech-shaped noise and multitalker babble), we
noted that implant listeners performed better with
the steady-state masker than the rapidly fluctuating
babble masker. This was true despite the fact that
the temporal characteristics of the multitalker bab-
ble masker are similar to those of steady-state noise
in that no temporal dips are available in the multi-

talker babble waveform that would allow the listen-
ers to “glimpse” the target speech. Previous studies
(Qin and Oxenham, 2003; Stickney, Zeng, Litovksy
& Assmann, 2004) have shown that unlike normal-
hearing listeners, cochlear implant users perform
better in steady-state noise than in the presence of a
single competing talker. In stark contrast to normal-
hearing listeners, implant listeners do not obtain a
release of masking in the presence of a competing
talker. The findings of the present study extend the
findings of Stickney et al. (2004) and support the
view that cochlear implant users can segregate
competing sounds more easily if the masker is
steady-state noise than competing talkers.

CONCLUSIONS

The present study assessed the performance of a
new nonlinear acoustic-to-electrical mapping func-
tion on speech recognition in noise by cochlear
implant users. More specifically, the performance of
an s-shaped mapping function, which was expansive
for low input levels up to a knee point and compres-
sive thereafter, was compared with the performance
of the log-mapping function currently used in the
subject’s daily processors. Results indicated that the
same s-shaped mapping function did not yield sig-
nificant improvements for all cochlear implant us-
ers. Significant benefits in speech intelligibility were
observed, however, when the s-shaped mapping
function was tuned to individual cochlear implant
users. Following the tuning, the s-shaped mapping
function, produced significantly higher scores than
the log-mapping function, in all noise conditions (�5
dB SNR speech-shaped noise and �5 to 10 dB SNR
multitalker babble).

APPENDIX A
This Appendix describes the noise estimation

algorithm used in our studies. This algorithm was
adapted from Rangachari & Loizou (2006).

The smoothed envelope of noisy speech is first
computed using the following first-order recursive
equation:

P(�, k) � �P(� � 1, k) � (1 � �)Y(�, k) (9)

where P��, k� is the smoothed envelope, � is the
time index, k is the channel index, Y��, k� is the
envelope of the noisy speech (extracted through
bandpass filtering, rectification and low-pass filter-
ing) and � is a smoothing constant. Next, a nonlin-
ear rule is used to track the minimum of the noisy
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speech envelope by continuously averaging past en-
velope values:

If Pmin���1, k� � P��, k� then

Pmin(�, k) � �Pmin(� � 1, k) �
1 � �

1 � �
(P(�, k)

� 0.96P(� � 1, k)) (10)
else

Pmin(�, k) � P(�, k)
end

where Pmin��, k� is the local minimum of the noisy
speech envelope and � and � are constants deter-
mined experimentally. The look-ahead factor � con-
trols the adaptation time of the local minimum.

After the minimum tracking, the next step is to
determine speech presence in each channel. Let the
ratio of the smoothed noisy envelope and its local
minimum be defined as:

Sr(�, k) � P(�, k) ⁄ Pmin(�, k) (11)

If the above ratio is found to be greater than a
preset threshold, it is taken as a channel containing
speech otherwise it is taken as a channel containing
either noise or insignificant amounts of speech en-
ergy. This is based on the principle that the envelope
of the noisy speech will be nearly equal to its local
minimum when speech is absent. Hence the smaller
the ratio is in Eq. (11), the higher the probability
that it will be a noise-only region and vice versa. The
speech-presence decision made for each channel at
time index � can be summarized as follows:

If Sr��, k� 	 


I(�, k) � 1 speech present (12)
else

I(�, k) � 0 speech absent
end

where 
 is a threshold determined experimentally.
From the above rule, a so-called speech-presence
probability, p��, k�, is updated using the following
first-order recursion:

p(�, k) � �pp(� � 1, k) � (1 � �p)I(�, k) (13)

where �p is a smoothing constant. Note that the
above recursion implicitly exploits the correlation
for speech presence in adjacent frames. Using the
above speech-presence probability estimate, we com-
pute the time-frequency dependent smoothing factor
as follows:

�s(�, k)–�d � (1 � �d)p(�, k) (14)

where �d is a constant. Note that �s��, k� takes
values in the range of �d � �s��, k� � 1.

Finally, after computing the frequency-dependent
smoothing factor �s��, k� using Eq. (14), we update
the noise envelope amplitude as follows:

D(�, k) � �s(�, k)D(� � 1, k) � (1 � �s(�, k))Y(�, k)

(15)

where D��, k� is the estimate of the noise envelope of
the kth channel at time index �.

The overall algorithm can be summarized as fol-
lows. After classifying the individual channels into
speech present/absent using Eq. (12), we update the
speech presence probability using Eq. (13) and then
use this probability to update the time-frequency de-
pendent smoothing factor in Eq. (14). The noise enve-
lope estimate is finally updated according to Eq. (15)
using a time-frequency dependent smoothing factor.

The following smoothing constants and parameters
were used in our implementation of Equations (9)–(15):
� � 0.5, �p � 0.5, �d � 0.8, � � 0.998, � � 0.5,

 � 12.
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