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Abstract—This paper presents a wavelet-based speech coding
strategy for cochlear implants. In addition, it describes the real-
time implementation of this strategy on a personal digital assistant
(PDA) platform. Three wavelet packet decomposition tree struc-
tures are considered and their performance in terms of computa-
tional complexity, spectral leakage, fixed-point accuracy, and real-
time processing are compared to other commonly used strategies
in cochlear implants. A real-time mechanism is introduced for
updating the wavelet coefficients recursively. It is shown that the
proposed strategy achieves higher analysis rates than the existing
strategies while being able to run in real time on a PDA platform.
In addition, it is shown that this strategy leads to a lower amount
of spectral leakage. The PDA implementation is made interactive
to allow users to easily manipulate the parameters involved and
study their effects.

Index Terms—Cochlear implants, real-time implementation,
recursive-wavelet computation, PDA platform.

I. INTRODUCTION

COCHLEAR implants are surgically implanted prosthetic
devices, which are used to provide a sensation of hear-

ing in profoundly deaf people. Approximately 188 000 people
around the world have been fitted with cochlear implants as of
2009 [1]. Cochlear implants have two components: a compo-
nent residing outside the body consisting of a microphone, a
speech processor, and a transmitter, and a component that is
surgically implanted inside the body behind the ear consisting
of a receiver and an electrode array [2]. The main function of the
speech processor is to decompose the input signal into its fre-
quency components, much like a healthy cochlea analyzes the
input signal into its frequency components. Much of the suc-
cess of cochlear implants can be attributed to the development of
sophisticated signal-processing algorithms implemented in real-
time on the speech processor. These algorithms were designed
to some extent to mimic the function of a healthy cochlea [2].

A number of factors need to be considered when implement-
ing in real-time signal-processing algorithms for cochlear im-
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plant applications. First, the incurred signal delay needs to be
small. Second, the frequency decomposition, which can be done
using either a filterbank or a fast Fourier transform (FFT), needs
to yield adequate frequency resolution similar to that of the
healthy ear. Fine spectral resolution would be highly desirable
for transmission of fine spectral cues (“fine structure”) to the
implant recipients. Fine resolution is also needed for the im-
plementation of current steering or current focusing stimulation
strategies [3]. Third, and perhaps most important, the complex-
ity of the algorithm needs to be low, so as to minimize the power
requirements. The latter criterion is important as it can prolong
the battery life of the speech processor. Finally, the implementa-
tion needs to provide for good temporal resolution, which in turn
will allow for the possibility of high-stimulation rates. Clearly,
the aforementioned factors are interrelated. For instance, the
use of filterbanks for spectral decomposition provides excellent
temporal resolution, but limited (by the number of channels) fre-
quency resolution. The use of FFT provides excellent frequency
resolution, but limited (by the update frame rate) temporal
resolution.

In this paper, we explore the use of wavelets for frequency
decomposition and describe its real-time implementation on a
PDA platform. A recursive-wavelet implementation is proposed
that addresses the limitation of the FFT approach of reduced
temporal resolution. The proposed implementation allows for
high-stimulation rates and has low-computational complexity.
The wavelet approach is shown to offer advantages over the
previous methods based on the FFT and recursive discrete FT
(DFT) [4].

This paper is organized as follows. An overview of com-
mon signal-processing strategies is provided in Section II.
Section III describes three wavelet decomposition tree struc-
tures and Section IV presents a recursive mechanism for updat-
ing wavelet coefficients from frame to frame. Section V covers
the implementation aspect and the optimization steps taken to
reach a real-time working solution on a PDA platform. The re-
sults are presented in Section VI, where all the methods are
compared in terms of computational complexity, spectral leak-
age, fixed-point accuracy, and real-time processing. Finally, the
conclusions are given in Section VII.

II. COCHLEAR IMPLANT SIGNAL-PROCESSING STRATEGIES

A. Continuous Interleaved Sampling

Continuous interleaved sampling (CIS) [5] is a common
signal-processing strategy in cochlear implants and is available
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Fig. 1. Block diagram of the CIS strategy.

by all three implant devices (Med-El, Advanced Bionics Corpo-
ration and Cochlear Corporation). The number of analysis chan-
nels varies across the three-implant devices. A bank of bandpass
filters is utilized to divide the preemphasized input speech signal
into a number of frequency bands. Rectification and low-pass
filtering with a cutoff frequency of 400 Hz follow the spectral
decomposition to extract the envelope corresponding to each
channel [5], [6]. The channel envelope is then compressed using
a logarithmic compression map to ensure that the amplitudes fall
within the electrical dynamic range. The compressed envelopes
modulate biphasic pulses stimulating the implanted electrodes.
Generally, 16–22 electrodes are used for stimulation, thus a
bank of 16–22 bandpass filters are often used. The channels
are often spaced logarithmically or semilogarithmically (linear
spacing up to 1 kHz and logarithmic spacing thereafter) across
the speech spectrum. Fig. 1 illustrates the block diagram of the
CIS strategy.

B. Advanced Combination Encoder

Advanced combination encoder (ACE) is an n-of-m signal-
processing strategy used in the Nucleus-24 implant device
(Cochlear Corporation, Lane Cove, NSW). It uses the FFT to
decompose the input speech signal into a number of frequency
bands. Often the speech signal captured by a microphone is
windowed using an 8-ms Hanning window with a sampling fre-
quency of 16 kHz. In other words, a 128-point FFT is often
utilized. The magnitude FFT spectrum is computed, and these
magnitudes are summed over the frequency range of a chan-
nel to produce 22 envelopes [6]–[8]. Out of the 22 envelopes,
8–12 maximum envelopes are selected for stimulation. In the
commercial Freedom processor, an 8-of-22 strategy is often
implemented. The selected channel amplitudes are mapped or
compressed to fit within the electrical dynamic range. The com-
pressed amplitudes are then used to modulate the stimulating
pulses.

In this strategy, the window is shifted in such a way that
the output rate after decomposition, referred to as analysis rate
here, is made higher than or equal to the stimulation rate. Due
to the real-time requirement on a PDA platform, which has
limited processing and memory resources compared to a PC
platform, one faces a limit on the maximum achievable analysis
rate. To obtain high-stimulation rates, the analysis frames are
often repeated. As stated in [6], this approach does not provide
any extra information. In order to provide high-analysis rates, a

Fig. 2. Block diagram of the n-of-m strategy.

faster implementation of ACE using recursive DFT was reported
in our previous work [4], where the window was shifted by one
sample at a time, and hence, the analysis rate was made equal to
the input sampling rate. In the recursive-DFT approach, the DFT
of a previous window is updated in a computationally efficient
manner to compute the DFT of a speech segment based on the
FFT values computed in past frames. As discussed in [4], since
the implementation is done in fixed-point arithmetic for real-
time operation, a resetting is done (and needed) by computing
a full FFT every 50 ms to keep the growth of the quantization
error within 1% of the floating-point implementation. The block
diagram of the n-of-m ACE strategy is shown in Fig. 2.

III. WAVELET-BASED n-OF-m STRATEGY

In this paper, we present the implementation of the n-of-m
strategy based on the wavelet transform. The wavelet approach
can be used to decompose the input speech signal into a number
of frequency bands [9]–[13], [19], [20]. Similar to the FFT-based
n-of-m strategy, the number of maximum amplitude channel
outputs Nmax , can be selected for stimulation and compressed
using a logarithmic compression map. The block diagram of the
wavelet-based n-of-m strategy is shown in Fig. 3.

A. Wavelet-Packet-Decomposition Tree Structures

Different tree structures can be used for the wavelet decom-
position. The tree structure determines the bandwidth and cutoff
frequency of each channel. Three different wavelet tree struc-
tures are considered in this paper. The wavelet tree structure
shown in Fig. 4 appears in [14] and [15], where the frequency
axis is divided according to a criticalband-like spacing [14], [16].
The frequency band extending from 0 to 0.015625 in normal-
ized frequency is not used in the computation of the channel
envelopes as it contains mostly dc information. In Fig. 4, the
numbers next to the tree branches indicate the channel num-
bers [17].

The decomposed outputs from different branches occur at
different frame rates. Hence, they need to be made of the same
rate in order to have a constant analysis rate for all channels.
This requires that the lower channels, which undergo several
filtering stages and downsampling, are interpolated linearly to
produce higher analysis rates [10]. In this study, we considered
an analysis rate of Fs/8, where Fs denotes the input sampling
frequency. For an input sampling frequency of 22 kHz, the anal-
ysis rate can be maintained at 2756 Hz. Hence, for a stimulation
rate lower than 2756 p/s (pulses per second) per channel, the
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Fig. 3. Block diagram of the n-of-m strategy using wavelet packet transform implementation.

Fig. 4. Wavelet packet decomposition based on tree structure 1.

analysis channel frames are downsampled, while for stimulation
rates higher than 2756 p/s, the output needs to be repeated or
linearly interpolated.

In order to match the channel spacing of the decomposition
tree to that used in the Nucleus family of implants [18], the
aforementioned wavelet tree structure is modified to form the
wavelet tree structure 2 shown in Fig. 5. The same approach can
be applied for other cochlear implant devices. The correspond-
ing channel numbers are shown by the branches [17] (note that
low-channel numbers indicate high-frequency channels consis-
tent with the numbering used in Nucleus devices). After the
decomposition, the channel outputs are linearly interpolated to
obtain the analysis rate of Fs/8.

The third wavelet tree structure considered is the binary tree
shown in Fig. 6 [9]. In this structure, the branches are ar-
ranged according to the frequency bands in ascending order.
The numbers next to the branches in Fig. 6 indicate the fre-
quency bands [17]. In this configuration, each branch is treated
as a frequency bin of the FFT. A channel output is computed
by summing up all the frequency-band outputs falling within
the frequency range of that channel. The number of channels
can be varied and the frequency range used in the Nucleus de-
vice is considered here for grouping the frequency bins into
different channels [18]. The produced analysis output at a rate
of Fs/64 is thus made constant across all channels. With this

Fig. 5. Wavelet packet decomposition based on tree structure 2.

wavelet-decomposition tree, the bandwidths of the channels
become exactly the same as the frequency bands used in the
Nucleus device. Clearly, the same approach can be applied to
any other implant device with different frequency spacing and
different number of electrodes. Table I gives the cutoff frequen-
cies of the channels corresponding to the three tree structures
for the input sampling rate of 16 kHz. Using the wavelet tree
structure 3, different clinical maps other than the ones listed in
the table can be obtained.

B. Types of Wavelets

Two widely used wavelet basis of Daubechies and Symm-
let are considered in our implementation. Each family has its
own advantages; the former provides a maximally flat response,
while the latter is more symmetrical [19]. Three filter lengths of
12, 24, and 30 are included in our implementation. The shorter
the response, the higher the aliasing and the lower the processing
time.

IV. RECURSIVE-WAVELET IMPLEMENTATION

Due to the need for downsampling at every stage of the
wavelet packet tree (WPT), the output rate after the sixth
stage becomes 1/64th of the input sampling rate. Generally,
the stimulation rate is maintained between 250 to 2400 p/s per
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Fig. 6. Wavelet packet decomposition based on tree structure 3.

TABLE I
LOWER AND UPPER CUTOFF FREQUENCIES OF THE CHANNELS

CORRESPONDING TO THE THREE WAVELET TREE STRUCTURES (INPUT

SAMPLING RATE IS 16 KHZ)

channel [6], [7] depending on the patient’s MAP. Hence, in order
to keep the stimulation rate within this range, the decomposed
signal has to be either repeated or interpolated, so as to have
the analysis rate at least as equal as the stimulation rate. When
the stimulus frame is repeated, however, no extra information
is provided. To avoid this, the input window is shifted here by
one sample at a time and the wavelet coefficients are updated
similar to a recursive-DFT approach [4].

When computing the wavelet coefficients within a short-
duration window, with the window being shifted by one sample
at a time, allows the analysis rate to be equal to the input sam-
pling rate. However, the recomputation of the wavelet coeffi-

Fig. 7. Two-stage wavelet decomposition with the highlighted branch describ-
ing the overlap update.

cients, each time the window is shifted, creates a bottleneck for
the real-time operation of the wavelet decomposition on a PDA
platform, which has a relatively limited processing power and
memory. This real-time challenge is met here by devising a com-
putationally efficient recursive mechanism to compute the new
wavelet coefficients based on the previously computed wavelet
coefficients.

In what follows, we present the recursive algorithm for the
path shown in Fig. 7. The same recursive algorithm is applicable
to any other path. The block diagram shown in Fig. 8 provides
the updating procedure for two-stage decomposition with one-
sample shift in the window position.

The pseudocode for recursively updating wavelet coefficients
is given below.

Let ψp
j,n (1 : Nj ) be a window of Nj samples at jth stage and

branch number p at time instant n. At the jth stage, there are a
total of 2j branches.

Update the input window (shift by one sample)
for stage_number s = 1 to Lstage

for branch_number p = 1 to 2s

update circular buffer pointers, such that

ψp
s,n (1 : Ns − 1) = ψp

s,n−2s (2 : Ns)

update last sample of window ψp
s,n (Ns)

end
end
The following equations give the updates for the (j + 1)th

stage at branches 2p and 2p + 1:

ψ2p
j+1,n (1 : Nj+1 − 1) = ψ2p

j+1,n−2j + 1 (2 : Nj+1) (1)

ψ2p+1
j+1,n (1 : Nj+1 − 1) = ψ2p+1

j+1,n−2j + 1 (2 : Nj+1) (2)

ψ2p
j+1,n (Nj+1) =

l=1∑
k=0

ψp
j,n (Nj − k)h(k) (3)

ψ2p+1
j+1,n (Nj+1) =

l=1∑
k=0

ψp
j,n (Nj − k)g(k). (4)
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Fig. 8. Wavelet coefficients update for one sample window shift.

Note that for all j = 0, 1, . . . , Lstage − 1, p = 0, 1, . . . , 2j −
1, n = 0, 1, . . . , and l is the decomposition filter length with
filter response h and g, as shown in Fig. 7. For an input speech
window of N samples, the number of samples at the jth stage
output is Nj = N/2j . It is easy to see that when the window
is shifted by one sample, the corresponding windows in all the
stages also get shifted by one sample. The time instance at
which the window is used to perform the updating depends on
the stage. For example, in stage 1, the window preceding the
previous window is used to perform the updating. In general,
at any given stage, the window used to perform the updating
is the window, which occurred 2 to power of (stage number-1)
instances before.

In our implementation, 128 sample windows are used to com-
pute the wavelet-decomposition coefficients. For a six-stage de-
composition, an input of 128 samples yields an output of 2
samples for every window, which is averaged to give a single
output.

Though this update algorithm allows us to run the wavelet
strategy in real time on a PC platform, it does not run in real
time on a PDA platform for an input sampling rate of 22 kHz or
higher. As a result, we have considered a shift of four samples
per window in our PDA implementation, as shown in Fig. 9.
This way, the processing burden associated with the window
updating in every stage is reduced compared to that of the one-
sample shift case. Furthermore, the number of windows to be
saved in memory is reduced compared to the one-sample shift
case. For four-sample shifting windows, which correspond to
97% overlap, the resulting analysis rate is made Fs/4. Thus,
for a 22-kHz input sampling rate, the analysis rate becomes
5512.5 Hz, which is sufficiently high and much higher than
what is used commercially (about 900 p/s per channel).

In general, for a 2sh samples shift with sh = 1, 2, . . ., the
update procedure is given by

ψ2p
j+1,n (1 : Nj+1 − 1) = ψ2p

j+1,n−2j + 1−s h (2 : Nj+1),

ψ2p+1
j+1,n (1 : Nj+1 − 1) = ψ2p+1

j+1,n−2j + 1−s h (2 : Nj+1)
(5)

ψ2p
j+1,n (Nj+1) =

l−1∑
k=0

ψp
j,n (Nj − k)h(k) (6)

ψ2p+1
j+1,n (Nj+1) =

l−1∑
k=0

ψp
j,n (Nj − k)g(k) (7)

∀ j = sh + 1, . . . Lstage − 1, p = 0, 1, . . . , 2j − 1,
n = 0, 1, . . . and

ψ2p
j+1,n (1 : Nj+1 − 2sh−(j+1)) = ψ2p

j+1,n−1(2
sh−(j+1) : Nj+1)

(8)

ψ2p+1
j+1,n (1 : Nj+1 − 2sh−(j+1)) = ψ2p+1

j+1,n−1(2
sh−(j+1) : Nj+1)

(9)

ψ2p
j+1,n (Nj+1 − δ) =

l−1∑
k=0

ψp
j,n (Nj − 2δ − k)h(k)

(10)

ψ2p+1
j+1,n (Nj+1 − δ) =

l−1∑
k=0

ψp
j,n (Nj − 2δ − k)g(k)

(11)

∀ j = 0, 1 . . . , sh and δ = 0, 1, . . . 2sh−(j+1) − 1. For
a shift of 2sh samples, the memory required at any stage can be
computed as follows:

Number of filters in stage j = 2j

number of windows to be kept in memory for a filter at any
branch of stage

j =
{

1, j ≤ sh
2j−sh , j > sh,

number of samples to be buffered in every window

=
{

L − 1 + 2sh−j , j ≤ sh
L, j > sh

yielding a total of

TM ≈
sh∑

j=0

(
2j (l − 1 + 2sh−j )

)
+

L s t a g e −1∑
j=sh+1

(
2j l2j−sh

)
(12)

where TM indicates the total memory required. Table II provides
the computational complexity and memory requirements for a
shift of one and four samples with filter lengths of 12, 24, 30,
and a six-stage decomposition.

The analysis frame rate can be increased either by overlap-
ping input windows or by linear interpolation of the analysis
channel outputs. Fig. 10 provides a comparison of the accuracy
of the wavelet coefficients obtained by using 97% overlapping
windows and upsampling (by a factor 16) in order to make the
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Fig. 9. Wavelet coefficients update for four samples window shift.

TABLE II
COMPUTATIONAL COMPLEXITY AND MEMORY REQUIREMENTS FOR THE WAVELET IMPLEMENTATION WITH AND WITHOUT UPDATING

Fig. 10. NMSE of analysis channel outputs obtained from wavelet-based n-
of-m strategy using linear interpolation and wavelet-based n-of-m strategy using
97% overlap window recursive update.

analysis rate equal to that of the overlapping method. In our im-
plementation, the wavelet tree structure 3 and the Symmlet basis
function were used with the filter response of length 30. Both
the Symmlet and Daubechies wavelet basis functions produced
similar outputs.

Accuracy is measured in terms of the normalized mse (nmse)
between the analysis channel outputs obtained using the earlier
two methods and the outputs obtained using FFT. It can be seen
that with overlapping windows the analysis channel output gets
closer to the one achieved by the FFT approach. The mse is
averaged over 30 IEEE sentences [21]. The normalized mse

error is computed as follows:

mse =
(

1
N ∗ channels

)

∗
N∑

n=1

channels∑
ch=1

(
(ϕFFT(n, ch) − ϕWPT(n, ch))2

max (ϕFFT(n, ch), ε)2

)

(13)

where N is the total number of samples, ϕFFT is the anal-
ysis channel output obtained using the FFT, ϕWPT is the
analysis channel output obtained using the WPT structure
3 with either overlapping windows and recursive update or
with nonoverlapping windows and linear interpolation, and
ε = 0.1%of max (ϕFFT(n, ch)) ∀n = 1, . . . , N .

V. PDA IMPLEMENTATION

The software implementation was done using hybrid Lab-
VIEW programming. Graphical programming in LabVIEW was
used in order to achieve user interactivity and real-time display.
The signal-processing functions were programmed in C and in-
serted as dynamic-link libraries (DLL) within LabVIEW. Sev-
eral optimizations steps were done to achieve real-time through-
put. As discussed in [4] and [22], these steps consisted of using
fixed-point arithmetic, applying efficient memory management,
and using built-in functions. PDA platforms often use fixed-
point processors. Thus, to avoid the computational burden asso-
ciated with performing floating-point operations on fixed-point
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Fig. 11. Front panel of the interactive wavelet program running in real time
on a PDA platform.

processors, all the operations were converted into fixed point
using either 16-bit or 32-bit word size. All the filters used to
compute the wavelet coefficients were finite-impulse response
(FIR) filters, which avoided the quantization error growth prob-
lem encountered in the recursive-DFT approach.

Static memory allocation was done in place of dynamic mem-
ory allocation. Global variables were used instead of passing the
parameters to every function. Several circular buffers of powers
of 2 length were used for the updates. Since the output at every
stage had to be saved in memory and used for updating, the
number of windows to save in memory differs from stage to
stage. The use of circular buffers at every stage for every branch
helped to efficiently update the pointers.

The developed interactive front panel of the LabVIEW pro-
gram or the graphical user interface is shown in Fig. 11. The PDA
is connected to a Freedom cochlear implant emulator coil using
a secure digital input output (SDIO) interface board, which we
previously reported in [23] and [24]. Researchers can change the
number of analysis channels, most comfortable levels, threshold
levels, number of maximum amplitude channels, filter spacing,
wavelet family, and filter length. They can also choose to observe
the captured speech signal and analysis channel outputs. Since
displaying a large buffer on the front panel is time-consuming,
the buffer is downsampled and the panel is refreshed once every
500 ms. The length of the buffer to be displayed can be chosen
out of two options of 50 or 100 ms. When using the program
in the binaural mode, researchers can choose either the right
implant, the left implant or both.

VI. RESULTS AND DISCUSSION

In this section, we compare the performance of the proposed
recursive wavelet-based n-of-m strategy, and the recursive DFT-
based n-of-m and CIS strategies, in terms of computational com-
plexity, spectral leakage, fixed-point accuracy, and real-time
processing.

A. Computational Complexity

The three wavelet tree structures differ from each other in the
way the channel spacing is implemented. The number of compu-
tations required for the first wavelet tree structure is the smallest
among the three. Table III provides the computational complex-
ity of the three WPT structures. In Table III, the number of real
multiplications required to decompose the signal using the CIS,
FFT-based n-of-m, recursive DFT-based n-of-m, and recursive
wavelet-based n-of-m strategies for the three tree structures us-
ing the three different decomposition filter lengths are listed. For
the CIS strategy, sixth-order bandpass filters and second-order
lowpass filters are considered. The number of analysis channels
is taken to be 22 for all the strategies to ensure a fair comparison.
As seen from Table III, the use of the recursive wavelet-based
n-of-m strategy requires fewer computations than the recursive
DFT-based n-of-m strategy.

B. Spectral Leakage

The main function of the cochlear implant signal processor
is to divide the input speech signal into a number of frequency
bands and to extract the signal strength (envelope) in each band,
so that the corresponding electrode can be stimulated accord-
ingly. A good measure of performance is spectral leakage. This
measure indicates how much or what percentage of the energy
in one band is leaked into adjacent bands [20], [25].

To measure the spectral leakage, we conducted a test in which
a synthetic signal (e.g., tone) of known frequency was used to
serve as the input signal. This signal was decomposed into 22
bands using the wavelet-packet-decomposition algorithm and
the signal strength was measured in each band. The ratio of the
power distributed in bands other than the band, where the signal
exists to the total power was defined to be the leakage factor
(LF). This factor provides a measure of how much energy is
leaked into other bands. Hence, the lower the LF, the better the
performance in terms of providing good frequency specificity.
The LF for channel “ch” was calculated as per the following
equation:

LF = 100 ×
(∑N

n=1
∑channels

k �=ch

(
ϕ(n, k)2

)
∑N

n=1
∑channels

k=1 ϕ(n, k)2

)
(14)

where ϕ(n, k) is the analysis channel output of channel k at time
instant n and N is the total number of samples in the test input.

Three different sets of inputs were used to measure spectral
leakage. The first one was a sinusoidal signal with the frequency
coinciding with the center frequency of the band, as indicated
in Fig. 12(a). The second was the sum of three sinusoidal sig-
nals, with one signal having a frequency equal to the center
frequency of the band. The other two sinusoids were randomly
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TABLE III
COMPUTATIONAL COMPLEXITY OF DIFFERENT STRATEGIES

Fig. 12. (a) Input 1 = S1. (b) Input 2 = S1 + S2 + S3. (c) Input 3 = S1 + S2 + S3.

Fig. 13. Comparison of LF for recursive DFT, CIS, and recursive-wavelet
(tree structure 3) implementations.

Fig. 14. Channel 20 envelope obtained using the bandpass filter, recursive-
DFT, and recursive-wavelet strategies for the syllable “asa.”

Fig. 15. Electrodogram of syllable “asa” using the recursive wavelet based
n-of-m strategy (channel 1 represents most basal channel and channel 22 repre-
sents most apical).

distributed within 70% of the bandwidth of that channel, as
shown in Fig. 12(b). The amplitudes of all the three signals
were considered to be of the same strength. The third set was
similar to the second set, but their amplitudes were varied in-
versely proportional to the distance from the center frequency, as
shown in Fig. 12(c). Fifty different realizations were considered
for the second and third sets. This was done for all 22 bands.

The floating-point implementation was used to compute the
LF. After averaging the LF over all the realizations, the LFs
for the recursive DFT and FFT implementations were found
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TABLE IV
NMSE [SEE (15)] BETWEEN FLOATING-POINT AND FIXED-POINT IMPLEMENTATIONS OF THE RECURSIVE-WAVELET STRATEGY

TABLE V
REAL-TIME PROCESSING TIME FOR 11.6 MS INPUT SPEECH FRAMES AND 22 ANALYSIS CHANNELS ON A PDA PLATFORM

to be nearly the same. Also, it is worth pointing out that both
Daubechies and Symmlet wavelets produced more or less the
same leakage. Fig. 13 shows the results expressed in terms of the
LF [see (14)]. As can be seen from Fig. 13, the recursive wavelet-
based n-of-m strategy yielded a lower LF than that obtained
with the recursive DFT-based strategy. The LF was found to be
comparable to CIS.

C. Tracking Temporal Features

Fig. 14 illustrates a sample envelope output of channel 20
for syllable “asa” spoken by a male speaker using the wavelet-
based n-of-m strategy. The extracted envelopes using the band-
pass filter and recursive-DFT strategies are superimposed for
comparison. As can be seen, the wavelet-based n-of-m strategy
performs on par with the other strategies as far as being able
to track temporal envelope features. Fig. 15 shows the elec-
trodogram for the syllable “asa.” The decomposition was done
by the recursive-wavelet method using the wavelet tree struc-
ture 3. In the n-of-m strategy, eight maximum amplitude analysis
channels were selected out of 22.

D. Fixed-Point Accuracy

To assess the accuracy of the fixed-point implementation, we
computed the averaged nmse between the envelope amplitude
values computed using the fixed-point and floating-point imple-
mentations

nmse(%) =
100

N ∗ channels

×
N∑

n=0

channels∑
ch=1

(
(ϕFLTP(n, ch) − ϕFIXP(n, ch))2

max (ϕFLTP(n, ch), ε)2

)
(15)

where ϕFLTP and ϕFIXP are the analysis channel output ob-
tained using the floating-point and fixed-point implementations,
respectively, N is the total number of samples in the sentence,
and ε = 0.1% of max (ϕFLTP(n, ch)) ∀n = 1, . . . , N .

Table IV shows the comparison of the nmse [see (15)] be-
tween the floating-point, and 32-bit and 16-bit fixed-point anal-
ysis channel outputs of the three-wavelet tree structures for the

Fig. 16. PDA-based research platform designed for cochlear implant studies.

case of four-sample shift per window. As can be seen from
Table IV, the mse remains below 1%. The mse was obtained by
averaging over all the 22 channels for 30 IEEE sentences.

E. Real-Time Processing

Table V shows the actual time required to process speech
frames of 11.6 ms duration (22 kHz sampling rate) on a typical
PDA with a clock frequency of 624 MHz (see Fig. 16 for test
setup). The PC version of the program took less than 1 ms at a
clock frequency of 3.2 GHz. The timings reported in columns
1 through 4 correspond to the recursive DFT-based ACE, recur-
sive wavelet-based n-of-m using the WPT structures 1, 2, and 3
with nonoverlapping windows and with the filter length of 30 on
a PDA platform. The last 3 columns show the timings obtained
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using the third tree structure with 97% overlapping windows
and filter lengths of 12, 24, and 30. As can be seen, real-time
implementation of the recursive-wavelet approach was accom-
plished with all filter lengths. It is worth pointing out that timings
shown in Table V include the decomposition, rectification, low-
pass filtering, selection of Nmax amplitudes, and logarithmic
compression for the 16-bit fixed-point implementation with 22
analysis channels.

VII. CONCLUSION

In this paper, a recursive wavelet-based n-of-m strategy was
proposed as an alternative to the existing ACE strategy that
is being used in commercial implants (e.g., Freedom device
from Cochlear Corporation). The real-time implementation of
this strategy on a PDA platform was also demonstrated. It was
shown that the proposed strategy achieves lower computational
complexity as well as lower spectral leakage compared to the
recursive DFT-based implementation. Due to these advantages,
it is expected that future generations of cochlear implants will
deploy the proposed recursive wavelet-based strategy.
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