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Abstract

Making meaningful comparisons between the performance of the various speech enhancement algorithms proposed over the years has
been elusive due to lack of a common speech database, differences in the types of noise used and differences in the testing methodology.
To facilitate such comparisons, we report on the development of a noisy speech corpus suitable for evaluation of speech enhancement
algorithms. This corpus is subsequently used for the subjective evaluation of 13 speech enhancement methods encompassing four classes
of algorithms: spectral subtractive, subspace, statistical-model based and Wiener-type algorithms. The subjective evaluation was
performed by Dynastat, Inc., using the ITU-T P.835 methodology designed to evaluate the speech quality along three dimensions: signal
distortion, noise distortion and overall quality. This paper reports the results of the subjective tests.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past three decades, various speech enhance-
ment algorithms have been proposed to improve the per-
formance of modern communication devices in noisy
environments. Yet, it still remains unclear as to which
speech enhancement algorithm performs well in real-world
listening situations where the background noise level and
characteristics are constantly changing. Reliable and fair
comparison between algorithms has been elusive for several
reasons, including lack of common speech database for
evaluation of new algorithms, differences in the types of
noise used and differences in the testing methodology.
Without having access to a common speech database, it
is nearly impossible for researchers to compare at very least
the objective performance of their algorithms with that of
others. Subjective evaluation of speech enhancement algo-
rithms is further complicated by the fact that the quality of

enhanced speech has both signal and noise distortion com-
ponents, and it is not clear as to whether listeners base their
quality judgments on the signal distortion, noise distortion
or both. This concern was recently addressed by a new
ITU-T standard (P.835) that was designed to lead the lis-
teners to integrate the effects of both signal and back-
ground distortion in making their ratings of overall quality.

In this paper, we report on the subjective comparison
and evaluation of 13 speech enhancement algorithms using
the ITU-T P.835 methodology. The speech enhancement
algorithms were chosen to encompass four different classes
of noise reduction methods: spectral subtractive, subspace,
statistical-model based and Wiener-type algorithms. These
algorithms were evaluated using a newly developed noisy
speech corpus (NOIZEUS) suitable for evaluation of
speech enhancement algorithms and available from our
website. The enhanced speech files were sent to Dynastat,
Inc (Austin, TX) for subjective evaluation using the
recently standardized methodology for evaluating noise
suppression algorithms based on ITU-T P.835 (2003). This
paper presents the results from the comparative analysis of
the subjective tests.
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2. NOIZEUS: a noisy speech corpus for evaluation of

speech enhancement algorithms

NOIZEUS1 is a noisy speech corpus recorded in our lab
to facilitate comparison of speech enhancement algorithms
among research groups. The noisy database contains 30
IEEE sentences (IEEE Subcommittee, 1969) produced by
three male and three female speakers, and was corrupted
by eight different real-world noises at different SNRs. The
noise was taken from the AURORA database (Hirsch
et al., 2000) and includes suburban train noise, multi-talker
babble, car, exhibition hall, restaurant, street, airport and
train-station noise. The list of sentences used in NOIZEUS
are given in Tables 1 and 2, and the broad phonetic class
distribution is shown in Fig. 1.

2.1. Speech material

Thirty sentences from the IEEE sentence database were
recorded in a sound-proof booth using Tucker Davis Tech-
nologies (TDT) recording equipment. The sentences were
produced by three male and three female speakers (five sen-
tences/speaker). The IEEE database was used as it contains
phonetically balanced sentences with relatively low word-
context predictability. The thirty sentences were selected
from the IEEE database so as to include all phonemes in
the American English language (see Fig. 1). The sentences
were originally sampled at 25 kHz and downsampled to
8 kHz.

2.2. Noise

To simulate the receiving frequency characteristics of
telephone handsets, the speech and noise signals were fil-
tered by the modified Intermediate Reference System
(IRS) filters used in (ITU-T P.862, 2000) for evaluation
of the PESQ measure. The frequency response of the filter
is shown in Fig. 2.

Noise was artificially added to the speech signal as fol-
lows. The IRS filter was independently applied to the clean
and noise signals. The active speech level of the filtered
clean speech signal was first determined using method B
of (ITU-T P.56, 1993). A noise segment of the same length
as the speech signal was randomly cut out of the noise
recordings, appropriately scaled to reach the desired SNR
level and finally added to the filtered clean speech signal.

Noise signals were taken from the AURORA database
(Hirsch et al., 2000) and included the following recordings
from different places: babble (crowd of people), car, exhibi-
tion hall, restaurant, street, airport, train station, and train.
The noise signals were added to the speech signals at SNRs
of 0 dB, 5 dB, 10 dB and 15 dB.

3. Algorithms evaluated

A total of 13 different speech enhancement methods
were evaluated based on our own implementation (see list
in Table 3). Representative algorithms from four different
classes of enhancement algorithms were chosen: three spec-
tral subtractive algorithms, two subspace algorithms, three
Wiener-type algorithms and five statistical-model based
algorithms. The Wiener-type algorithms were grouped sep-
arately since these algorithms estimate the complex spec-
trum in the mean square sense while the statistical-model
algorithms estimate the magnitude spectrum. The parame-
ters used in the implementation of these algorithms were
the same as those published unless stated otherwise. No
adjustments were made for the algorithms (e.g., Cohen,

Table 2
List of sentences used in NOIZEUS

Filename Speaker Gender Sentence text

sp16.wav KI F The stray cat gave birth to kittens
sp17.wav KI F The lazy cow lay in the cool grass
sp18.wav KI F The friendly gang left the drug store
sp19.wav KI F We talked of the sideshow in the circus
sp20.wav KI F The set of china hit the floor with a crash
sp21.wav SI M Clams are small, round, soft and tasty
sp22.wav SI M The line where the edges join was clean
sp23.wav SI M Stop whistling and watch the boys march
sp24.wav SI M A cruise in warm waters in a sleek yacht is

fun
sp25.wav SI M A good book informs of what we ought

to know
sp26.wav TI F She has a smart way of wearing clothes
sp27.wav TI F Bring your best compass to the third class
sp28.wav TI F The club rented the rink for the fifth night
sp29.wav TI F The flint sputtered and lit a pine torch
sp30.wav TI F Let us all join as we sing the last chorus

The sentences used in the subjective evaluation are underlined.

1 Available at: http://www.utdallas.edu/~loizou/speech/noizeus/.

Table 1
List of sentences used in NOIZEUS

Filename Speaker Gender Sentence text

sp01.wav CH M The birch canoe slid on the smooth
planks

sp02.wav CH M He knew the skill of the great young
actress

sp03.wav CH M Her purse was full of useless trash
sp04.wav CH M Read verse out loud for pleasure
sp05.wav CH M Wipe the grease off his dirty face
sp06.wav DE M Men strive but seldom get rich
sp07.wav DE M We find joy in the simplest things
sp08.wav DE M Hedge apples may stain your hands green
sp09.wav DE M Hurdle the pit with the aid of a long pole
sp10.wav DE M The sky that morning was clear and

bright blue
sp11.wav JE F He wrote down a long list of items
sp12.wav JE F The drip of the rain made a pleasant

sound
sp13.wav JE F Smoke poured out of every crack
sp14.wav JE F Hats are worn to tea and not to dinner
sp15.wav JE F The clothes dried on a thin wooden rack

The sentences used in the subjective evaluation are underlined.
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2002) originally designed for a sampling rate of 16 kHz. To
assess the merit of noise-estimation algorithms, two speech-
enhancement algorithms (denoted in Table 3 with the suffix
-ne) were also implemented with a noise-estimation algo-
rithm (Rangachari and Loizou, 2006). That is, a noise-esti-
mation algorithm was used in the speech enhancement
algorithms indicated in Table 3 with -ne, to estimate and
update the noise spectrum. The majority of the algorithms
tested updated the noise spectrum using a voice activity
detector (more on this later).

With the exception of the multi-band (MB) spectral sub-
traction algorithm developed in our lab (Kamath and
Loizou, 2002; Kamath, 2001), the remaining algorithms
have been well documented and referenced in the litera-
ture. Next, we provide a brief description of the MB
algorithm.

The spectrum is first divided into a number of frequency
bands, from which the posteriori segmental SNR is esti-
mated in each band. A subtraction factor is derived accord-
ing to the segmental SNR in each band. The estimate of the
clean speech spectrum bSiðkÞ at frequency bin k and band i

is obtained as follows:

jbS iðkÞj2 ¼ jbY iðkÞj2 � aidijbDiðkÞj2; bi 6 k 6 ei ð1Þ
where bY iðkÞ is the pre-processed noisy speech spectrum (see
Eq. (5)), bDiðkÞ is the noise spectrum estimate, bi and ei are
the beginning and ending frequency bins of band i, ai is the
over-subtraction factor and di is a tweaking factor that can
be individually set for each frequency band to customize
noise removal. Negative values in Eq. (1) are spectrally
floored to: 0:002 � jbY iðkÞj2. To further mask any remaining
musical noise, a small amount of the noisy spectrum is
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Fig. 1. Broad phonetic class distribution of the NOIZEUS corpus.

Fig. 2. Frequency response of IRS filter.
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introduced back to the enhanced spectrum as follows:

j Si

z}|{
ðkÞj2 ¼ jbSiðkÞj2 þ 0:05 � jbY iðkÞj2, where j Si

z}|{
ðkÞj2 is

the newly enhanced power spectrum. A total of eight line-
arly spaced bands were used in Eq. (1), and di was empiri-
cally set to

di ¼
1; i ¼ 1

2:5; 1 < i < 8

1:5; i ¼ 8

8><>: ð2Þ

The band-specific subtraction factor ai is a piecewise linear
function of the segmental SNR of band i and is calculated
as follows (Berouti et al., 1979):

ai ¼
5; SNRi < �5

4� 3
20
ðSNRiÞ; �5 6 SNRi 6 20

1; SNRi > 20

8><>: ð3Þ

where

SNRi ðdBÞ ¼ 10log10

Pei
k¼bi
jbY iðkÞj2Pei

k¼bi
jbDiðkÞj2

 !
ð4Þ

Prior to the subtraction operation in Eq. (1), the noisy
speech spectrum jYi(k)j is pre-processed to reduce the var-
iance of the spectrum estimate using the following weighted
spectral average:

jbY jðkÞj ¼
XM

i¼�M

W ijY j�iðkÞj ð5Þ

where j is the frame index, jbY jðkÞj is the pre-processed noisy
speech magnitude spectrum, jYj(k)j is the noisy speech
magnitude spectrum, M = 2 and the filter weights Wi were
empirically set to W ¼ ½ 0:09 0:25 0:32 0:25 0:09 �. A
20-ms Hamming window with 50% overlap between frames

was used in the MB algorithm and in all the other Fourier-
transform based algorithms tested.

A voice activity detector (VAD) was used in most of the
speech enhancement methods to update the noise spec-
trum. More precisely, a statistical-model based voice activ-
ity detector (VAD) (Sohn et al., 1999) was used to update
the noise spectrum during speech-absent periods. The fol-
lowing VAD decision rule was used:

1

L

XL�1

k¼1

log Kk ?
H1

H0

g ð6Þ

where

Kk ¼
1

1þ nk
exp

cknk

1þ nk

� �
ð7Þ

where nk and ck are defined as in (Ephraim and Malah,
1984), and nk is estimated using the decision directed
approach (a = 0.98). L is the size of the FFT, H1 denotes
the hypothesis of speech presence, H0 denotes the hypoth-
esis of speech absence, and g is a preset threshold. In our
implementation, g = 0.15 for all conditions. During the
speech-absent periods, i.e., when the left side of Eq. (6)
was smaller than g, the noise power spectrum was updated
according to

NjðkÞ ¼ ð1� bÞjY jðkÞj2 þ bN j�1ðkÞ ð8Þ

where Nj(k) is the estimate of the noise power spectrum at
frame j for frequency bin k, b = 0.98 is a preset smoothing
factor, and jYj(k)j is the noisy speech magnitude spectrum.
The initial estimate of Nj(k) was obtained from the first
(speech-absent) 120-ms segment of each sentence.

The subspace methods used the VAD method proposed
in (Mittal and Phamdo, 2000) with the threshold value set
to 1.2. The frame windowing scheme proposed in (Jabloun
and Champagne, 2003) was adopted in both VAD methods.
More specifically, the signal was divided into 32-ms frames
with 50% overlap between frames. The samples in the 32-ms
frame were used to construct a 32 · 32 Toeplitz covariance
matrix. The 32-ms frames were further subdivided into 4-ms
frames with 50% overlap. The noisy data in each 4-ms frame
were enhanced using the same eigenvector matrix derived
from the 32 · 32 Toeplitz covariance matrix.

Table 3 lists all the algorithms evaluated along with the
associated parameters and equations. MATLAB imple-
mentations of all the algorithms tested are available in
Loizou (2007).

4. Subjective evaluation

To reduce the length and cost of the subjective evalua-
tions, only a subset of the NOIZEUS corpus was processed
by the 13 algorithms and submitted to Dynastat, Inc., for
formal subjective evaluation. A total of 16 sentences (see
Tables 1 and 2) corrupted in four background noise envi-
ronments (car, street, babble and train) at two levels of
SNR (5 dB and 10 dB) were processed. These sentences

Table 3
List of the 13 speech enhancement algorithms evaluated

Algorithm Equation/parameters Reference

KLT Eqs. (14), (48) Hu and Loizou (2003)
pKLT Eq. (34), m = 0.08 Jabloun and

Champagne (2003)
MMSE-

SPU
Eqs. (7) and (51), q = 0.3 Ephraim and Malah

(1984)
log-MMSE Eq. (20) Ephraim and Malah

(1985)
logMMSE-

ne
Eq. (20) Ephraim and Malah

(1985)
logMMSE-

SPU
Eqs. (2), (8), (10), (16) Cohen (2002)

pMMSE Eq. (12) Loizou (2005)
RDC Eqs. (6), (7), (10), (14) and (15) Gustafsson et al. (2001)
RDC-ne Eqs. (6), (7), (10), (14) and (15) Gustafsson et al. (2001)
MB Eqs. (4)–(7) Kamath and Loizou

(2002)
WT Eqs. (11) and (25) Hu and Loizou (2004)
Wiener-as Eqs. (3)–(7) Scalart and Filho

(1996)
AudSup Eqs. (26) and (38), mb(i) = 1,2

iterations
Tsoukalas et al. (1997)

SPU = speech presence uncertainty, ne = noise estimation.
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were produced by two male speakers and two female
speakers.

4.1. Test methodology

The subjective tests were designed according to ITU-T
recommendation P.835. The P.835 methodology was
designed to reduce the listener’s uncertainty in a subjective
test as to which component(s) of a noisy speech signal, i.e.,
the speech signal, the background noise, or both, should
form the basis of their ratings of overall quality. This
method instructs the listener to successively attend to and
rate the enhanced speech signal on:

(1) the speech signal alone using a five-point scale of sig-
nal distortion (SIG) (Table 4),

(2) the background noise alone using a five-point scale of
background intrusiveness (BAK) (Table 5),

(3) the overall effect using the scale of the Mean Opinion
Score (OVRL) – [1 = bad, 2 = poor, 3 = fair, 4 =
good, 5 = excellent].

The process of rating the signal and background of noisy
speech was designed to lead the listener to integrate the
effects of both the signal and the background in making their
ratings of overall quality. Each trial in a P.835 test involved
a triad of speech samples, where each sample consisted of a
single sentence recorded in background noise. For each
sample within the triad, listeners successively used one of
the three five-point rating scales (SIG, BAK, and OVRL)
to register their judgments of the quality of the test condi-
tion. In addition to the experimental conditions, each exper-
iment included a number of reference conditions designed to
independently vary the listener’s SIG, BAK, and OVRL
ratings over the entire five-point range of the rating scales.

4.2. Preparation of test sequences

The single-sentence sample files were concatenated into
four triads for each of the talkers and for each condition.
The P.835 standard permits the use of triads made up of

either three different samples or the same sample repeated
three times. For this experiment, the same sample was used
three times in each triad. As per the P.835 standard, for
half of the trials in the experiment the rating scale order
was SIG, BAK, and OVRL, and for the other half of the
trials the order was BAK, SIG, and OVRL.

The total number of test conditions was too large to
present in a single P.835 test. Therefore, the test conditions
were partitioned into two sub-sets which were evaluated in
two separate P.835 tests. The conditions were assigned to
the two tests such that the primary factors involved in
the experiment (algorithm, noise type, SNR) would be con-
founded at the highest order interaction. Each of the two
tests involved the various test conditions and the 12 stan-
dard P.835 reference conditions. Each of the test and refer-
ence conditions was represented by files from four talkers
arranged in four triads. The files within each test were allo-
cated to four presentation sets under a partially balanced/
randomized-blocks experimental design. In each presenta-
tion set, the samples were ordered in a pseudo-randomized
balanced-block presentation sequence to control for the
effects of time and order of presentation.

4.3. Listening panels

A total of 32 listeners were recruited for the listening
tests. For each of the two P.835 tests, each of the four pre-
sentation sequences was presented to a separate panel of
eight naive listeners. Listeners were recruited from Dynas-
tat’s database of native speakers of North American Eng-
lish. Listeners were between the ages of 18 and 50 years
of age. No listener had participated in a listening test in
the previous three months. The listening panels in the
two experiments were independent, i.e., no listener partici-
pated in more than one experiment.

4.4. Audio presentation

The processed speech material were presented to listen-
ers seated at separate, visually screened listening stations in
a soundproof room. Speech materials were presented mon-
aurally via Sennheiser HD-25 supra-aural headphones.
Subjects were instructed to use the headphone on their pre-
ferred listening ear. The other ear was open and a constant
ambient noise floor was maintained at 30 dBA using Hoth
noise (ITU-T P.835, 2003). The headphones were driven by
a distribution amplifier set to deliver active speech at a level
of 79 dB Sound Pressure Level (SPL) at the ear reference
plane. Headphones were calibrated with a B&K 4153 Arti-
ficial Ear with supra-aural headphone adapter, a 4134
microphone element and a 2609 measurement amplifier.
The processed speech files were channelled through a
Townshend Computer Tools DAT-Link+ and recorded
on Digital Audio Tape (DAT) for presentation to the
listening panels. In each listening station the rating scales
were presented on a PC monitor and ratings were regis-
tered with a PC keyboard.

Table 4
Scale of signal distortion (SIG)

5 – Very natural, no degradation
4 – Fairly natural, little degradation
3 – Somewhat natural, somewhat degraded
2 – Fairly unnatural, fairly degraded
1 – Very unnatural, very degraded

Table 5
Scale of background intrusiveness (BAK)

5 – Not noticeable
4 – Somewhat noticeable
3 – Noticeable but not intrusive
2 – Fairly conspicuous, somewhat intrusive
1 – Very conspicuous, very intrusive

592 Y. Hu, P.C. Loizou / Speech Communication 49 (2007) 588–601
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4.5. Test sessions

The tests lasted approximately 1.25 h. Listeners took
short breaks (10 min) between sessions. At the beginning
of session 1, the listeners were presented with a practice
block of 12 trials to familiarize them with the task and
the timing in the trial presentation. The practice blocks
were also designed to present the listeners with the
range of conditions that would be involved in the tests
on both the signal and the background scales. For each
test, half the panels were presented with trials in
which the rating scale order was SIG–BAK–OVRL for
the first two sessions and BAK–SIG–OVRL for sessions
3 and 4. To train the listeners for the change in scale order,
listeners were presented with the practice block again at the
beginning of session 3. For the other half of the panels, the
sessions and scale order was counter-balanced.

4.6. Evaluation results

Figs. 3–6 show the mean scores for the SIG, BAK, and
OVRL scales for speech processed by 13 different speech
enhancement algorithms evaluated in four types of back-
ground noise and at two SNR levels (5 dB and 10 dB).
The mean scores for the noisy speech (unprocessed) files
are also shown for reference.

5. Statistical analysis and discussion

We present comparative analysis at three levels. At the
first level, we compare the performance of the algorithms
within each of the four classes (subspace, statistical-model,
subtractive, and Wiener-type). This comparison was meant
to examine whether there were significant differences
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Fig. 3. The mean scores for SIG, BAK, and OVRL scales for the 13 methods evaluated in babble noise background and for SNR levels of 5 dB and 10 dB.
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between algorithms within each class. At the second level,
we compare the performance of the various algorithms
across all classes aiming to find the algorithm(s) that per-
formed the best across all noise conditions. Lastly, at the
third level, we compare the performance of all algorithms
in reference to the noisy speech (unprocessed). This latter
comparison will provide valuable information as to which
algorithm(s) improved significantly the quality of noisy
speech.

In order to assess significant differences between the
ratings obtained with each algorithm, we subjected the rat-
ings of the 32 listeners to statistical analysis. Analysis of
variance (ANOVA) indicated a highly significant effect
(F(13, 403) = 20.17, p < 0.0005) of speech enhancement
algorithms on the ratings of signal, noise and overall qual-
ity (a highly significant effect was also found in all SNR

conditions and types of noise). Following the ANOVA,
we conducted multiple comparison statistical tests accord-
ing to Tukey’s HSD test to assess significant differences
between algorithms. Differences between scores were
deemed significant if the obtained p value (level of signifi-
cance) was smaller than 0.05.

5.1. Within-class algorithm comparisons

In terms of overall quality, the two subspace algorithms
performed equally well for most SNR conditions and four
types of noise, except at 5 dB car noise. The generalized
subspace approach (Hu and Loizou, 2003) performed sig-
nificantly (p = 0.006) better than the pKLT approach (Jab-
loun and Champagne, 2003) in 5 dB car noise. Lower noise
distortion (i.e., higher BAK scores) was observed with the
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Fig. 4. The mean scores for SIG, BAK, and OVRL scales for the 13 methods evaluated in car noise background and for SNR levels of 5 dB and 10 dB.
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pKLT method in most conditions, however, the difference
in scores was not found to be statistically significant. Sig-
nificantly (p = 0.017) lower noise distortion (i.e., higher
BAK scores) was observed with the pKLT method only
in 5 dB train noise. Lower signal distortion was generally
observed with the generalized subspace method in most
conditions with significant differences in 5 dB train noise
and in both car noise conditions (5 dB and 10 dB). In brief,
of the two subspace methods, the generalized subspace
approach performed slightly better in terms of overall qual-
ity and lower signal distortion. The pKLT approach was
more successful in suppressing background noise, however
at the expense of introducing signal distortion.

The majority of the statistical-model based algorithms
examined performed equally well in terms of overall quality.
There was no statistically significant difference in overall

quality between the MMSE-SPU, the log-MMSE, the log-
MMSE with noise estimation (logMMSE-ne) and the
pMMSE algorithms. The logMMSE algorithm that incor-
porated signal-presence uncertainty (logMMSE-SPU)
(Cohen, 2002) performed significantly worse than the other
algorithms in overall quality. This was surprising at first,
but close analysis indicated that the logMMSE-SPU
algorithm was sensitive to the noise spectrum estimate,
which in our case was obtained with a VAD algorithm.
Furthermore, the parameters given in (Cohen, 2002) were
appropriate for a sampling rate of 16 kHz, while the present
performance evaluation involved a sampling rate of 8 kHz.
Hence, the experimental results do not necessarily represent
the best performance obtainable with the logMMSE-SPU
algorithm. Indeed, subsequent listening tests (conducted
after Dynastat’s subjective evaluation) confirmed that the
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Fig. 5. The mean scores for SIG, BAK, and OVRL scales for the 13 methods evaluated in street noise background and for SNR levels of 5 dB and 10 dB.
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logMMSE-SPU algorithm2 performed better than the
logMMSE algorithm when a noise-estimation algorithm
(Cohen, 2003) was used to update the noise spectrum.

In terms of noise distortion, all algorithms, including the
logMMSE-SPU algorithm, performed equally well. Lower
noise distortion (i.e., higher BAK scores) was obtained with
the pMMSE method (compared to the MMSE-SPU
method) in some conditions (5 dB train, 5 dB car, 10 dB
street), however the difference was not statistically signifi-
cant (p > 0.05). In terms of speech distortion, nearly all
algorithms (MMSE-SPU, log-MMSE, logMMSE-ne and

pMMSE algorithms) performed equally well. Incorporating
a noise estimation algorithm in the logMMSE method did
not produce significant improvements in performance.
One explanation for that is that the duration of the sentences
was too short to observe the real benefit of noise-estimation
algorithms. In brief, with the exception of the logMMSE-
SPU algorithm, the MMSE algorithms performed equally
well in overall quality, signal and noise distortion.

Of the three spectral-subtractive algorithms tested, the
multi-band spectral subtraction algorithm (Kamath and
Loizou, 2002) performed consistently the best across all
conditions, in terms of overall quality. In terms of noise
distortion, the MB and RDC algorithms performed equally
well except in 5 dB train and 10 dB street conditions, in
which the multi-band algorithm performed significantly
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Fig. 6. The mean scores for SIG, BAK, and OVRL scales for the 13 methods evaluated in train noise background and for SNR levels of 5 dB and 10 dB.

2 We would like to thank Dr. Cohen for providing his code with the
implementation of the logMMSE-SPU algorithm with noise estimation.
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better (i.e., lower noise distortion). Performance (noise dis-
tortion) of the RDC algorithm that included noise estima-
tion (RDC-ne) was significantly lower than the MB
algorithm in all conditions. There was no real benefit, in
terms of overall quality, of including noise estimation in
the RDC method. In terms of speech distortion, the MB
and RDC algorithms performed equally well in most con-
ditions except in 5 dB car noise and in 10 dB street noise, in
which the MB algorithm performed significantly better
(i.e., lower speech distortion). In brief, the MB algorithm
generally performed better than the RDC algorithm in
overall quality, signal and noise distortion. It should be
pointed out, however, that the MB algorithm has an unfair
advantage over the RDC algorithm in that it uses non-cau-
sal filtering (Eq. (5)) to smooth out the noisy speech
spectra.

Finally, of the three Wiener-filtering type algorithms
examined, the Wiener-as and WT algorithms performed
the best. In terms of overall quality, the Wiener-as method
performed better than the WT method in three conditions:
5 dB train, 10 dB car and 5 dB babble noise. In the remain-
ing five conditions, the Wiener-as method performed as
well as the WT method (Hu and Loizou, 2004). The Wie-
ner-as method also produced consistently lower signal dis-
tortion for most conditions, except in 10 dB train, 10 dB
babble and street conditions, in which it performed equally
well with the WT method. All three Wiener-type algo-
rithms produced the same level of noise distortion in all
conditions. In brief, the Wiener-as method performed, for
the most part, better than the other Wiener algorithms in
terms of overall quality and signal distortion.

5.2. Across-class algorithm comparisons

The above comparisons assessed differences between
algorithms within each of the four classes of speech
enhancement methods, but did not provide the answer as
to which algorithm(s) performed the best overall across
all noise conditions. Such comparisons are reported in this
section.

Multiple paired comparisons (Tukey’s HSD) were con-
ducted between the algorithm with the highest score

against all other algorithms. Tables 6–8 report the results
for the overall quality, signal distortion and noise distor-
tion comparisons respectively.

Table 6 shows the results obtained from the statistical
analysis for overall quality. Asterisks in the table indicate
absence of statistically significant difference (i.e., p > 0.05)
between the algorithm with the highest score and the
denoted algorithm. That is, the algorithms denoted by
asterisks in Table 6 performed equally well. It is clear from
Table 6, that there is no single best algorithm, but rather
that several algorithms performed equally well across most
conditions. In terms of overall quality, the following algo-
rithms performed equally well across all conditions:
MMSE-SPU, logMMSE, logMMSE-ne, pMMSE and
MB. The Wiener-as method also performed well in five
of the eight conditions (see Table 6).

Table 7 shows the results obtained from the statistical
analysis for signal distortion. The following algorithms
performed the best, in terms of yielding the lowest speech
distortion, across all conditions: MMSE-SPU, logMMSE,
logMMSE-ne, pMMSE, MB and Wiener-as. The KLT,
RDC and WT algorithms also performed well in a few
isolated conditions (see Table 7).

Finally, Table 8 shows the results obtained from the
statistical analysis for noise distortion. The following
algorithms performed the best, in terms of yielding the low-
est noise distortion across nearly all conditions: MMSE-
SPU, logMMSE, logMMSE-ne, pMMSE and MB. The
pKLT method also performed well in five of the eight con-
ditions. The KLT, RDC, RDC-ne, Wiener-as and AudSup
algorithms performed well in a few isolated conditions (see
Table 8).

Comparing the results in Tables 6–8, we observe that the
algorithms that yielded the lowest noise distortion (i.e., low-
est noise residual) were not necessarily the algorithms that
yielded the highest overall quality. The pKLT algorithm,
for instance, performed well in terms of noise distortion,
but performed poorly in terms of overall quality and speech
distortion. In contrast, the algorithms that performed the
best in terms of speech distortion were also the algorithms
with the highest overall quality. This suggests that listeners
are influenced more by the distortion imparted on the

Table 6
Results obtained from comparative statistical analysis of overall quality (OVRL) scores

KLT pKLT MMSE-
SPU

log-
MMSE

logMMSE-
ne

logMMSE-
SPU

pMMSE RDC RDC-
ne

MB WT Wiener-
as

AudSup

Car 5 dB * * * * *
10 dB * * * * *

Babble 5 dB * * * * * *
10 dB * * * * * *

Street 5 dB * * * * * *
10 dB * * * * * *

Train 5 dB * * * * * *
10 dB * * * * *

Algorithms indicated by asterisks performed equally well. Algorithms with no asterisks performed poorly.
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speech signal than on the background noise when making
judgments of overall quality (more on this in Section 5.4).
That is, listeners seem to place more emphasis on speech
distortion rather on noise distortion when judging the qual-
ity of speech enhanced by a noise suppression algorithm.

5.3. Comparisons in reference to noisy speech

Lastly, we report on the comparisons between the
enhanced speech and the noisy (unprocessed) speech. Such
comparisons are important as they tell us about the possi-
ble benefits (or lack thereof) of using speech enhancement
algorithms.

Multiple paired comparisons (Tukey’s HSD) were con-
ducted between the ratings obtained with noisy speech
(unprocessed) samples and the ratings obtained with
speech enhanced by the various algorithms. The results
are reported in Tables 9–11 for overall quality, signal dis-
tortion and noise distortion comparisons respectively. In
these tables, asterisks indicate significant differences (i.e.,
significant benefit) between the ratings of noisy speech
and enhanced speech. Table entries indicated as ‘ns’ denote
non-significant differences between the ratings of noisy
speech and enhanced speech, i.e., noisy and enhanced
speech were rated equally. Blank entries in the Tables indi-
cate inferior ratings (i.e., significantly poorer ratings) for

the enhanced speech compared to the ratings of noisy
speech samples.

Table 9 shows the comparisons of the ratings of overall
quality of noisy speech and enhanced speech. The striking
finding is that only a subset of the algorithms tested pro-
vided significant benefit to overall quality and only in a
few conditions (car, street and train). The algorithms
MMSE-SPU, log-MMSE, logMMSE-ne, and pMMSE
improved significantly the overall speech quality but only
in a few isolated conditions. The majority of the algorithms
(indicated with ‘ns’ in Table 9) did not provide significant
improvement in overall quality when compared to the
noisy (unprocessed) speech.

Table 10 shows the comparisons of the ratings of signal
distortion of noisy speech and enhanced speech. For this
comparison, we do not expect to see any asterisks in the
Table. Good performance is now indicated with ‘ns’, sug-
gesting that the enhanced speech did not contain any
notable speech distortion. The algorithms MMSE-SPU,
log-MMSE, logMMSE-ne, pMMSE, MB and Wiener-as
performed the best (i.e., no notable speech distortion was
introduced) in all conditions. The algorithms WT, RDC
and KLT also performed well in a few isolated conditions.

Table 11 shows the comparisons of the ratings of noise
distortion of noisy speech and enhanced speech. The algo-
rithms MMSE-SPU, log-MMSE, logMMSE-ne, log-
MMSE-SPU and pMMSE lowered significantly noise

Table 7
Results obtained from comparative statistical analysis of speech distortion (SIG) scores

KLT pKLT MMSE-
SPU

log-
MMSE

logMMSE-
ne

logMMSE-
SPU

pMMSE RDC RDC-
ne

MB WT Wiener-
as

AudSup

Car 5 dB * * * * * *
10 dB * * * * * *

Babble 5 dB * * * * * *
10 dB * * * * * * * *

Street 5 dB * * * * * * * *
10 dB * * * * * *

Train 5 dB * * * * * *
10 dB * * * * * *

Algorithms indicated by asterisks performed equally well. Algorithms with no asterisks performed poorly.

Table 8
Results obtained from comparative statistical analysis of noise distortion (BAK) scores

KLT pKLT MMSE-
SPU

log-
MMSE

logMMSE-
ne

logMMSE-
SPU

pMMSE RDC RDC-
ne

MB WT Wiener-
as

AudSup

Car 5 dB * * * * *
10 dB * * * * * *

Babble 5 dB * * * * * * * * * * * *
10 dB * * * * * * * * *

Street 5 dB * * * * * * *
10 dB * * * * * * *

Train 5 dB * * * * * * *
10 dB * * * * *

Algorithms indicated by asterisks performed equally well. Algorithms with no asterisks performed poorly.
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distortion for most conditions. The MB, pKLT and Aud-
Sup also lowered noise distortion in a few (2–3) conditions.
The remaining algorithms (indicated with ‘ns’ in Table 11)
did not produce significantly lower noise distortion com-
pared to the noisy (unprocessed) speech. That is, the back-
ground noise level was not perceived to be significantly
lower in the enhanced speech than the noisy speech.

5.4. Contribution of speech and noise distortion to

judgment of overall quality

As mentioned earlier, the P.835 process of rating the sig-
nal and background of noisy speech was designed to lead
the listener to integrate the effects of both the signal and
the background in making their ratings of overall quality.

Table 9
Statistical comparisons between the ratings of overall quality of noisy (unprocessed) speech and enhanced speech

KLT pKLT MMSE-
SPU

log-
MMSE

logMMSE-
ne

logMMSE-
SPU

pMMSE RDC RDC-
ne

MB WT Wiener-
as

AudSup

Car 5 dB ns * * ns * ns ns ns ns
10 dB ns ns * ns ns ns ns ns ns

Babble 5 dB ns ns ns ns ns ns ns ns
10 dB ns ns ns ns ns ns ns ns

Street 5 dB ns ns ns * ns ns ns ns ns ns ns
10 dB ns ns ns ns ns ns ns ns ns ns

Train 5 dB ns ns * * ns ns ns ns ns ns
10 dB ns ns ns * ns ns ns ns ns ns ns ns

Algorithms denoted with asterisks improved significantly the overall quality of noisy speech. That is, the quality of the enhanced speech was judged to be
significantly better than that of noisy speech. In contrast, algorithms denoted with ‘ns’ did not improve the overall quality of noisy speech.

Table 10
Statistical comparisons between the ratings of speech distortion (SIG) of noisy (unprocessed) speech and enhanced speech

KLT pKLT MMSE-
SPU

log-
MMSE

logMMSE-
ne

logMMSE-
SPU

pMMSE RDC RDC-
ne

MB WT Wiener-
as

AudSup

Car 5 dB ns ns ns ns ns ns ns ns
10 dB ns ns ns ns ns ns

Babble 5 dB ns ns ns ns ns ns
10 dB ns ns ns ns ns ns ns ns ns

Street 5 dB ns ns ns ns ns ns ns ns
10 dB ns ns ns ns ns ns ns ns

Train 5 dB ns ns ns ns ns ns ns
10 dB ns ns ns ns ns ns ns ns

Algorithms denoted with ‘ns’ did not introduce notable speech distortion. In contrast, algorithms with blank table entries introduced notable speech
distortion when compared to the noisy (unprocessed) speech.

Table 11
Statistical comparisons between the ratings of noise distortion (BAK) of noisy (unprocessed) speech and enhanced speech

KLT pKLT MMSE-
SPU

log-
MMSE

logMMSE-
ne

logMMSE-
SPU

pMMSE RDC RDC-
ne

MB WT Wiener-
as

AudSup

Car 5 dB ns * * * * * * ns ns ns ns ns *
10 dB ns ns * * * * * ns ns * ns ns *

Babble 5 dB ns ns * * ns ns ns ns ns * ns ns ns
10 dB ns ns ns ns ns ns ns ns ns ns ns ns ns

Street 5 dB ns ns * * * * * ns ns ns ns ns ns
10 dB ns * ns * * ns * ns ns ns ns ns ns

Train 5 dB ns * * * * * * ns ns * ns ns ns
10 dB ns ns * * * * * ns ns ns ns ns ns

Algorithms denoted with asterisks significantly lowered noise distortion compared to that of un-processed noisy speech. In contrast, algorithms denoted
with ‘ns’ did not lower noise distortion.
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Of great interest is finding out the individual contribution
of speech and noise distortion to judgment of overall qual-
ity. Our previous data (Tables 6 and 7) led us to believe
that listeners were influenced more by speech distortion
when making quality judgments. To further substantiate
this, we performed multiple linear regression analysis on
the ratings obtained for overall quality, speech and noise
distortion. We treated the overall quality score as the
dependent variable and the speech and noise scores as the
independent variables. Regression analysis revealed the fol-
lowing relationship between the three rating scales:

ROVL ¼ �0:0783þ 0:571 � RSIG þ 0:366 � RBAK ð9Þ

where ROVL is the predicted overall (OVRL) rating score,
RSIG is the SIG rating and RBAK is the BAK rating. The
resulting correlation coefficient was q = 0.927 and the stan-
dard error of the estimate was 0.22. Fig. 7 shows the scatter
plot of the listener’s overall quality ratings against the pre-
dicted ratings obtained with Eq. (9). The above equation
confirms that listeners were indeed integrating the effects
of both signal and background distortion when making their
ratings. Different emphasis was placed, however, on the two
types of distortion. Consistent with our previous observa-
tion, listeners seem to place more emphasis on the distortion
imparted on the speech signal itself rather than on the back-
ground noise, when making judgments of overall quality.

6. Conclusions

The present study reported on the subjective evaluation
of 13 different speech enhancement algorithms using the
ITU-T P.835 methodology designed to evaluate the speech

quality along three dimensions: signal distortion, noise
distortion and overall quality. A total of 32 listeners partic-
ipated in the listening tests. Based on the statistical analysis
of the listener’s ratings of the enhanced speech, in terms of
overall quality, speech and noise distortion, we can draw
the following conclusions:

(1) In terms of overall quality and speech distortion, the
following algorithms performed the best: MMSE-
SPU, logMMSE, logMMSE-ne, pMMSE and MB.
The Wiener-as method also performed well in some
conditions. The subspace algorithms performed
poorly.

(2) The algorithms that performed the best in terms of
yielding low speech distortion were also the algo-
rithms yielding the highest overall quality. This sug-
gests that listeners were influenced for the most part
by the distortion imparted on the speech signal than
on the background noise when making judgments
of overall quality. This was also confirmed by regres-
sion analysis (Eq. (9)).

(3) Incorporating noise estimation algorithms in place of
VAD algorithms for updating the noise spectrum did
not produce significant improvements in perfor-
mance. One explanation for that is that the duration
of the sentences was too short to observe the real ben-
efit of noise-estimation algorithms.

(4) Comparisons of ratings of the overall quality of noisy
(unprocessed) speech against that of enhanced (pro-
cessed) speech revealed that only a subset of the algo-
rithms tested provided significant benefit to overall
quality and only in a few conditions (car, street and
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Fig. 7. Regression analysis of listener’s OVRL ratings, based on SIG and BAK ratings.

600 Y. Hu, P.C. Loizou / Speech Communication 49 (2007) 588–601



Aut
ho

r's
   

pe
rs

on
al

   
co

py

train). No algorithm produced significant quality
improvement in multi-talker babble, i.e., in highly
nonstationary environments.

(5) In terms of low computational complexity and good
performance, the two winners were the Wiener-as
and multi-band spectral subtraction algorithms.
Unlike the Wiener-as method which relies on the
decision-directed approach to estimate the a priori
SNR, the multi-band spectral subtraction algorithm
does not make use of a priori SNR information.
Yet, the multi-band spectral subtraction algorithm
performed as well as the statistical-model based algo-
rithms in nearly all conditions (Tables 6–8).
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