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Abstract. This chapter provides an overview of the various methods and tech-
niques used for assessment of speech quality. A summary is given of some of the 
most commonly used listening tests designed to obtain reliable ratings of the qual-
ity of processed speech from human listeners. Considerations for conducting suc-
cessful subjective listening tests are given along with cautions that need to be  
exercised. While the listening tests are considered the gold standard in terms of as-
sessment of speech quality, they can be costly and time consuming. For that  
reason, much research effort has been placed on devising objective measures that 
correlate highly with subjective rating scores. An overview of some of the most 
commonly used objective measures is provided along with a discussion on how 
well they correlate with subjective listening tests. 

The rapid increase in usage of speech processing algorithms in multi-media and 
telecommunications applications raises the need for speech quality evaluation. 
Accurate and reliable assessment of speech quality is thus becoming vital for the 
satisfaction of the end-user or customer of the deployed speech processing sys-
tems (e.g., cell phone, speech synthesis system, etc.). 

Assessment of speech quality can be done using subjective listening tests or us-
ing objective quality measures. Subjective evaluation involves comparisons of 
original and processed speech signals by a group of listeners who are asked to rate 
the quality of speech along a pre-determined scale.  Objective evaluation involves 
a mathematical comparison of the original and processed speech signals. Objec-
tive measures quantify quality by measuring the numerical “distance” between the 
original and processed signals. Clearly, for the objective measure to be valid, it 
needs to correlate well with subjective listening tests, and for that reason, much 
research has been focused on developing objective measures that modeled various 
aspects of the auditory system. This Chapter provides an overview of the various 
subjective and objective measures proposed in the literature [1] [2, Ch. 10] for as-
sessing the quality of processed speech. 

Quality is only one of many attributes of the speech signal. Intelligibility is a 
different attribute and the two are not equivalent. For that reason, different as-
sessment methods are used to evaluate quality and intelligibility of processed 
speech. Quality is highly subjective in nature and it is difficult to evaluate reliably. 
This is partly because individual listeners have different internal standards of what 
constitutes “good” or “poor” quality, resulting in large variability in rating scores 
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among listeners. Quality measures assess “how” a speaker produces an utterance, 
and includes attributes such as “natural”, “raspy”, “hoarse”, “scratchy”, and so on. 
Quality is known to possess many dimensions, encompassing many attributes of 
the processed signal such as “naturalness”, “clarity”, “pleasantness”, “brightness”, 
etc. For practical purposes we typically restrict ourselves to only a few dimensions 
of speech quality depending on the application. Intelligibility measures assess 
“what” the speaker said, i.e., the meaning or the content of the spoken words. In 
brief, speech quality and speech intelligibility are not synonymous terms, hence 
different methods need to be used to assess the quality and intelligibility of proc-
essed speech. 

The present Chapter focuses on assessment of speech quality, as affected by 
distortions introduced by speech codecs, background noise, noise-suppression al-
gorithms and packet loss in telecommunication systems. 

1   Factors Influencing Speech Quality 

There is a host of factors that can influence speech quality. These factors depend 
largely on the application at hand and can affect to some degree listening and talk-
ing difficulty. In telecommunication applications, for instance, degradation factors 
that can cause a decrease in speech quality and subsequently increase listening dif-
ficulty include distortions due to speech codecs, packet loss, speech clipping and 
listener echo [3]. The distortions alone introduced by speech codecs vary widely 
depending on the coding rate [1, Ch. 4]. The distortions introduced, for instance, 
by waveform coders (e.g., ADPCM) operating at high bit rates (e.g., 16 kbps) dif-
fer from those introduced by linear-predictive based coders (e.g., CELP) operating 
at relatively lower bit rates (4-8 kbps). 

The distortions introduced by hearing aids include peak and center clipping, 
Automatic Gain Control (AGC), and output limiting. The AGC circuit itself intro-
duces non-linear distortions dictated primarily by the values of attack and release 
time constants. Finally, the distortions introduced by the majority of speech-
enhancement algorithms depend on the background noise and the suppression 
function used (note that some enhancement algorithms can not be expressed in 
terms of a suppression function). The choice of the suppression function can affect 
both the background noise and speech signal itself, leading to background and 
speech distortions. The suppression function of spectral-subtractive type of algo-
rithms, for instance, is known to introduce “musical noise” distortion [4]. 

In summary, there are many factors influencing speech quality and the source 
of those factors depends on the application. Hence, caution needs to be exercised 
when choosing subjective or objective measures to evaluate speech quality. 

2   Subjective Listening Tests 

Several methods for evaluating speech quality have been proposed in the literature 
[1]. These methods can be broadly classified into two categories: those that  
are based on relative preference tasks and those that are based on assigning a  
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numerical value on the quality of the speech stimuli, i.e., based on quality ratings. 
In the relative preference tests, listeners are presented with a pair of speech stimuli 
consisting of the test stimuli and the reference stimuli. The reference stimuli are 
typically constructed by degrading the original speech signal in a systematic fash-
ion, either by filtering or by adding noise. Listeners are asked to select the stimuli 
they prefer the most. In the rating tests, listeners are presented with the test speech 
stimuli and asked to rate the quality of the stimuli on a numerical scale, typically a 
5-point scale with one indicating poor quality and a five indicating excellent qual-
ity. No reference stimuli are needed in the rating tests. As we will see next, these 
tests have their strengths and weaknesses, and in practice, the best test might de-
pend on the application at hand. In the following sections, we describe in more de-
tail the relative preference and quality rating tests which can be used to assess the 
quality of degraded speech.  

2.1   Relative Preference Methods   

Perhaps the simplest form of paired comparison test is the forced-choice paired 
comparison test. In this test, listeners are presented with pairs of signals produced 
by systems A and B, and asked to indicate which of the two signals they prefer. 
The same signal is processed by both systems A and B. Results are reported in 
terms of percent of time system A is preferred over system B.   Such a method is 
typically used when interested in evaluating the preference of system A over other 
systems. The main drawback of this simple method is that it is not easy to com-
pare the performance of system A with the performance of other systems obtained 
in other labs. 

While the above AB preference test tells us whether system A is preferred over 
system B, it does not tell us by how much. That is, the magnitude of the difference 
in preference is not quantified. The comparison category rating (CCR) test is de-
signed to quantify the magnitude of the preference difference on a 4-point scale 
with the rating of 0 indicating no difference, 1 indicating small difference, 2 indi-
cating a large difference and 3 indicating a very large difference. Table 1 shows 
the category ratings [5,6]. This scale is also referred to as the comparison mean 
opinion score (CMOS). Positive and negative numbers are used to account for 
both directions of preference. 

2.2   Absolute Category Rating Methods  

Preference tests typically answer the question: “How well does an average listener 
like a particular test signal over another signal or over a reference signal which 
can be easily reproduced?” Listeners must choose between two sequentially pre-
sented signals, but do not need to indicate the magnitude of their preference  
(except in the CCR test, Table 1) or the reason(s) for their decision. In some appli-
cations, however, knowing the reason why a particular signal is preferred over an-
other is more important that the preference score itself. Another shortcoming of 
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the preference methods is that the reference signals do not always allow for a wide 
range of distortions as they only capture a limited scope of speech distortions that 
could be encountered. This could potentially result in most of the test signals be-
ing preferred (or disliked) over the reference signals, thereby introducing a bias in 
the quality evaluation.  Lastly, most preference tests produce a relative measure of 
quality (e.g., relative to a reference signal) rather than an absolute measure. As 
such, it is difficult to compare preference scores obtained in different labs without 
having access to the same reference signals. The above shortcomings of the pref-
erence tests can be addressed by the use of absolute judgment quality tests in 
which judgments of overall quality are solicited from the listeners without the 
need for reference comparisons. These tests are described next. 

Table 1. Comparison category ratings used in the comparison mean opinion score (CMOS) 
test 

Rating Quality of second stimulus com-
pared to the first is: 

3 Much better 
2 Better 
1 Slightly better 
0 About the same 
-1 Slightly worse 
-2 Worse 
-3 Much worse 

2.2.1   Mean Opinion Scores (MOS) 

The most widely used direct method of subjective quality evaluation is the cate-
gory judgment method in which listeners rate the quality of the test signal using a 
five-point numerical scale  (see Table 2), with 5 indicating “excellent” quality and 
1 indicating “unsatisfactory” or “bad” quality. This method is one of the methods 
recommended by the IEEE Subcommittee on Subjective Methods [7] as well as by 
ITU [6,8]. The measured quality of the test signal is obtained by averaging the 
scores obtained from all listeners. This average score is commonly referred to as 
the Mean Opinion Score (MOS).  

The MOS test is administered in two phases: training and evaluation. In the 
training phase, listeners hear a set of reference signals that exemplify the high (ex-
cellent), the low (bad) and the middle judgment categories. This phase, also 
known as “anchoring phase”, is very important as it is needed to equalize the sub-
jective range of quality ratings of all listeners. That is, the training phase should in 
principle equalize the “goodness” scales of all listeners to ensure, to the extent 
possible, that what is perceived “good” by one listener is perceived “good” by the 
other listeners. A standard set of reference signals need to be used and described 
when reporting the MOS scores [9]. In the evaluation phase, subjects listen to the 
test signal and rate the quality of the signal in terms of the five quality categories 
(1-5) shown in Table Table 2.  
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Table 2. MOS rating scale 

Rating Speech quality Level of distortion 
5 Excellent Imperceptible 
4 Good Just perceptible, but not annoying 
3 Fair Perceptible and slightly annoying 
2 Poor Annoying, but not objectionable 
1 Bad Very annoying and objectionable 

 
Detailed guidelines and recommendations for administering the MOS test can 

be found in the ITU-R BS.562-3 standard [6] and include: 

1. Selection of listening crew: Different number of listeners is recom-
mended depending on whether the listeners had extensive experience 
in assessing sound quality. Minimum number of non-expert listeners 
should be 20 and minimum number of expert listeners should be 10. 
The listeners need to be native speakers of the language of the speech 
materials tested, and should not have any hearing impairments. 

2. Test procedure and duration: Speech material (original and de-
graded) should be presented in random order to subjects, and the test 
session should not last more than 20 minutes without interruption. This 
step is necessary to reduce listening fatigue. 

3. Choice of reproduction device: Headphones are recommended over 
loudspeakers, since headphone reproduction is independent of the 
geometric and acoustic properties of the test room. If loudspeakers are 
used, the dimensions and reverberation time of the room need to be re-
ported.  

Further guidelines pertaining the choice of speech input levels, noise and reference 
conditions, etc. for proper evaluation of the quality of narrow- and wide-band 
speech codecs can be found in the ITU standard [5] as well as in [10]. 

Reference signals can be used to better facilitate comparisons between  MOS 
tests conducted at different times, different laboratories and different languages 
[11]. MOS scores can be obtained, for instance, using different Modulated Noise 
Reference Unit (MNRU) reference signals1 for various values of Q (S/N) ranging 
from 5 to 35 [5,11]. A plot of MOS scores as a function of Q can be constructed to 
transform the raw MOS scores to an equivalent Q value. The Q equivalent values 
can then be used to compare performance among systems in different labs. 

The MOS test is based on a five-category rating of the speech quality (Table 2). 
The quality scale is in a way quantized into five discrete steps, one for each cate-
gory. Listeners are therefore forced to describe the complex impressions of speech 

                                                           
1 The MNRU reference signals are generated by adding to the input signal random noise 

with amplitude proportional to the instantaneous signal amplitude as follows: 
/20( ) ( ) 1 10 ( )Qr n x n d n−= +⎡ ⎤

⎢ ⎥⎣ ⎦  where  x(n) is the input speech signal, d(n) is the random 

noise and Q is the desired SNR.  



628 P.C. Loizou
 

quality in terms of the five categories. It is implicitly assumed that these five steps 
(categories) are uniformly spaced, i.e., that they equidistant from each other. This 
assumption, however, might not be true, in general. For these reasons, some have 
suggested modifying the above test to ask the listeners to evaluate the test signals 
in terms of real numbers from 0 to 10, where zero indicates “bad” quality and 10 
indicates “excellent” quality [12]. In this test, no quantization of the quality scale 
is done since the listeners are allowed to use fractions between integers, if they so 
desire. 

A variant of the MOS test that addresses to some degree the low resolution is-
sue stated above, is the degradation mean opinion score (DMOS) test [13]. In this 
test, the listeners are presented with both the unprocessed signal (which is used as 
a reference) and the processed signal. Listeners are asked to rate the perceived 
degradation of the processed signal relative to the unprocessed signal on a 5-point 
scale (Table 3). This test is suitable for situations in which the signal degradations 
or impairments are small. 

Table 3. Degradation rating scales 

Rating Degradation 
1 Very annoying 
2 Annoying 
3 Slightly annoying 
4 Audible but not annoying 
5 Inaudible 

2.2.2   Diagnostic Acceptability Measure  

The absolute category judgment method (e.g., MOS test) is based on ratings of the 
overall quality of the test speech signal. These ratings, however, do not convey 
any information about the listeners’ bases for judgment of quality. Two different 
listeners, for instance, may base their ratings on different attributes of the signal, 
and still give identical overall quality rating. Similarly, a listener might give the 
same rating for two signals produced by two different algorithms, but base his 
judgments on different attributes of each signal. In brief, the MOS score alone 
does not tell us which attribute of the signal affected the rating. The MOS test is 
therefore considered to be a single-dimensional approach to quality evaluation, 
and as such it can not be used as a diagnostic tool to improve the quality of speech 
enhancement or speech coding algorithms. 

A multi-dimensional approach to quality evaluation was proposed by Voiers 
[14] based on the Diagnostic Acceptability Measure (DAM). The DAM test 
evaluates the speech quality on three different scales classified as parametric, 
metametric and isometric [1,15]. These three scales yield a total of 16 measure-
ments on speech quality covering several attributes of the signal and background. 
The metametric and isometric scales represent the conventional category judgment 
approach where speech is rated relative to “intelligibility”, “pleasantness” and 
“acceptability”. The parametric scale provides fine-grained measurements of the 
signal and background distortions. Listeners are asked to rate the signal distortion 
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on six different dimensions and the background distortion on four dimensions. 
Listeners are asked for instance to rate on a scale of 0 to 100 how muffled or how 
nasal the signal sounds ignoring any other signal or background distortions pre-
sent. Listeners are also asked to rate separately on a scale of 0 to 100 the amount 
of hissing, buzzing, chirping or rumbling present in the background. The compos-
ite acceptability measure summarizes all the information gathered from all the 
scales into a single number, and is computed as a weighted average of the individ-
ual scales. 

The parametric portion of the DAM test relies on the listeners’ ability to detect, 
perhaps more reliably, specific distortions present in the signal or in the back-
ground rather than providing preference judgments of these distortions.  It there-
fore relies on the assumption that people tend to agree better on what they hear 
rather than on how well they like it [15]. To borrow an example from daily life, it 
is easier to get people to agree on the color of a car than how much they like it. As 
argued in [15], the parametric approach tends to give more accurate – more reli-
able – scores of speech quality as it avoids the individual listener’s “taste” or pref-
erence for specific attributes of the signal from entering the subjective quality 
evaluation. 

Compared to the MOS test, the DAM test is time consuming and requires care-
fully trained listeners. Prior to each listening session, listeners are asked to rate 
two “anchor” and four “probe” signals.  The “anchors” consist of examples of 
high and low quality speech and give the listeners a frame of reference.  The 
“probes” are used to detect any coincidental errors which may affect the results in 
a particular session. In addition to the presentation of “anchors” and “probes”, lis-
teners are selected on the basis that they give consistent ratings over time and have 
a moderately high correlation to the listening crew’s historical average rating [1].  
The selected listeners are calibrated prior to the testing session so as to determine 
their own subjective origin or reference relative to the historical average listener’s 
ratings. 

2.2.3   The ITU-T P.835 Standard for Evaluating Noise-Suppression 
Algorithms 

The above subjective listening tests (DAM and MOS) were designed primarily for 
the evaluation of speech coders. The speech coders, however, are evaluated 
mainly in quiet and generally introduce different types of distortion than those en-
countered in noise suppression algorithms. Speech enhancement algorithms typi-
cally degrade the speech signal component while suppressing the background 
noise, particularly in low SNR conditions. That is, while the background noise 
may be suppressed, and in some cases rendered inaudible, the speech signal may 
get degraded in the process. This situation complicates the subjective evaluation of 
speech enhancement algorithms since it is not clear as to whether listeners base 
their overall quality judgments on the signal distortion component, noise distortion 
component or both. This uncertainty regarding the different weight individual lis-
teners place on the signal and noise distortion components introduces additional 
error variance in the subjects’ ratings of overall quality resulting and consequently 
decreases the reliability of the ratings. These concerns were addressed by the  
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ITU-T standard (P. 835) [16] that was designed to lead the listeners to integrate 
the effects of both signal and background distortion in making their ratings of 
overall quality. 

The methodology proposed in [16] reduces the listener’s uncertainty by re-
quiring him/her to successively attend to and rate the waveform on: the speech 
signal alone, the background noise alone, and the overall effect of speech and 
noise on quality. More precisely, the ITU-T P.835 method instructs the listener to 
successively attend to and rate the enhanced speech signal on: 

1. the speech signal alone using a five-point scale of signal distortion (SIG) 
– see Table 4. 

2. the background noise alone using a five-point scale of background intru-
siveness (BAK) – see Table 5, 

3. the overall (OVL) effect using the scale of the Mean Opinion Score  - 
[1=bad, 2=poor, 3=fair, 4=good, 5=excellent]. 

Table 4. Scale of signal distortion (SIG) 

Rating Description 
5 Very natural, no degradation 
4 Fairly natural, little degradation 
3 Somewhat natural, somewhat degraded 
2 Fairly unnatural, fairly degraded 
1 Very unnatural, very degraded 

Table 5. Scale of background intrusiveness (BAK) 

Rating Description 
5 Not noticeable 
4 Somewhat noticeable 
3 Noticeable but not intrusive 
2 Fairly conspicuous, somewhat intrusive 
1 Very conspicuous, very intrusive 

 

Each trial contains a three-sentence sample of speech laid out in the format shown 
in  Figure 1. Each sample of speech is followed by a silent period during which 
the listener rates the signal according to the SIG, BAK or OVL scales. In the ex-
ample shown in the figure, each sample of speech is approximately four seconds 
in duration and includes: one second of preceding background noise alone, two 
seconds of noisy speech (roughly the duration of a single sentence), and one sec-
ond of background noise alone. Each sample of speech is followed by an appro-
priate silent interval for rating.  For the first two samples, listeners rate either the 
signal or the background depending on the rating scale order specified for that 
trial. For the signal distortion rating, for instance, subjects are instructed to attend 
only to the speech signal and rate the speech on the five-category distortion scale 
shown in Table 4. For the background distortion rating, subjects are instructed to 
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attend only to the background and rate the background on the five-category intru-
siveness scale shown in Table 5. Finally, for the third sample in each trial, subjects 
are instructed to listen to the noisy speech signal and rate it on the five-category 
overall quality scale used in MOS tests (Table 2). To control for the effects of rat-
ing scale order, the order of the rating scales needs to be balanced. That is, the 
scale order should be “Signal, Background, Overall Effect” for half of the trials, 
and “Background, Signal, Overall Effect” for the other half.  The ITU-T P.835 
standard was used in [17] to evaluate and compare the performance of 13 different 
speech enhancement algorithms. 

 

Fig. 1. Stimulus presentation format for the listening tests conducted according to the  
ITU-T P.835 standard 

2.3   Considerations in Subjective Listening Tests 

2.3.1   Evaluating the Reliability of Quality Judgments: Recommended 
Practice 

In the above subjective tests, listeners rate the quality of the processed speech on a 
5-point discrete scale (MOS test) or on a 0-100 continuous scale (DAM test). For 
the ratings to be meaningful, however, listeners must use the scales consistently. A 
given listener must rate a specific speech sample the same way every time he or 
she hears it. That is, we would like the intra-rater reliability of quality judgments 
to be high. Listeners need, in other words, to be self-consistent in their assessment 
of quality. Various statistics have been used to evaluate intra-rater reliability 
[18,19]. The two most common statistics are the Pearson’s correlation coefficient 
between the first and second ratings, and the test-retest percent agreement.   

Additionally, all listeners must rate a given speech sample in a similar way. We 
would thus like the inter-rater reliability of quality judgments to be high. A num-
ber of inter-rater reliability measures have been used [18] and include among oth-
ers the Cronbach’s alpha [20], Kendall’s coefficient of Concordance [21] and the 
intraclass correlation coefficient [22,23].  

The measurements of intra- and inter-rater reliability are critically important as 
they indirectly indicate the confidence we place on the listeners’ (i.e., the raters) 
quality judgments. High values of inter-rater reliability, for instance, would sug-
gest that another sample of listeners would produce the same mean rating score for 
the same speech material. In other words, high inter-rater reliability implies high 
reproducibility of results. In contrast, a low value of inter-rater reliability would 
suggest that the listeners were not consistent in their quality judgments. 
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The efficacy of reliability measures has been studied extensively in behavioral 
sciences (see reviews in [19,24]) as well as in voice research where pathological 
voices are rated by clinicians in terms of breathiness or roughness [18,25,26].  
More detailed description about the intra- and inter-rater reliability measures can 
be found in [2, Chap. 10]. 

2.3.2   Using Statistical Tests to Assess Significant Differences: Required 
Practice 

After conducting subjective quality tests and collecting the ratings from all sub-
jects, we often want to compare the performance of various algorithms. At the 
very least, we are interested in knowing whether a specific algorithm improves the 
speech quality over the baseline condition (i.e., un-processed speech).  Consider 
for instance the MOS ratings scores obtained by 10 listeners in Table 6 when pre-
sented with speech processed by different algorithms. The mean MOS score for 
speech processed by algorithm A was 3.24, and the mean rating score for speech 
processed by algorithm B was 3.76. For this example, can we safely say with con-
fidence that algorithm B improved the subjective speech quality relative to algo-
rithm A?  The answer is no, as it depends largely on the inter-rater reliability of 
quality judgments or grossly on the variance of the rating scores. Consider the Ex-
ample 2 in Table 6 contrasting the rating scores of speech processed by say two 
different algorithms, C and D. The mean rating scores are identical to those ob-
tained by algorithms A and B, however, the variance of the rating scores is high, 
suggesting that the inter-rater reliability in Example 2 was low (i.e., subjects were 
not consistent with each other when making quality judgments).  In brief, we can 
not reach a conclusion, based solely on the mean rating scores, as to which algo-
rithm performs better without first performing the appropriate statistical test. 

Table 6. Example MOS ratings of 10 listeners for speech processed by algorithms A-D 

 Example 1 Example 2 
Subjects Alg. A Alg. B Alg. C  Alg. D 

1 3.10 3.60 1.80 1.80 
2 3.20 3.70 2.60 1.50 
3 3.50 4.00 3.50 4.00 
4 3.30 3.80 4.50 4.90 
5 3.40 3.90 2.50 3.70 
6 3.20 3.70 3.50 3.90 
7 3.50 4.00 4.10 4.50 
8 3.10 3.60 4.60 5.00 
9 3.00 3.50 2.10 4.60 

10 3.10 3.80 3.20 3.70 

Mean 3.24 3.76 3.24 3.76 
Variance 0.03 0.03 0.96 1.46 
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Statistical techniques [27, ch. 4] can be used to draw inferences about the 
means of two populations, which in our case correspond to the ratings of proc-
essed and un-processed speech or more generally to ratings obtained using two 
different algorithms. The t-statistic can often be used to test two hypothesis, the 
null hypothesis  that the means are equal, and the alternate hypothesis that the 
means are different. The computed value of t will determine if we will accept or 
reject the null hypotheses. If the value of t is found to be greater than a critical 
value (found in statistics tables), then we reject the null hypothesis and therefore 
conclude that the means of the two populations are different. For the example in 
Table 6, if t is found to be larger than the critical value, we conclude that there is a 
statistically significant difference in quality and that algorithm B produced better 
speech quality than algorithm A. If the value of t is found to be smaller than the 
critical value, then we accept the null hypothesis and conclude that the means of 
the two populations do not differ, i.e., performance (quality) of algorithm A is as 
good as performance of algorithm B. For the Example 1 in Table 6, t-tests re-
vealed that the rating scores of algorithm B are significantly higher than the rat-
ings of algorithm A, i.e., algorithm B performed better than algorithm A. For the 
Example 2 in Table 6, however, t-tests revealed non-significant differences be-
tween the ratings of algorithms C and D. In other words, algorithm D did not im-
prove speech quality relative to algorithm C. As the examples in Table 6 illustrate, 
we can not draw conclusions as to which algorithm improves quality based  
solely on the mean rating scores (the mean scores were identical in examples  
1 and 2). 

The above t-test applies only when we want to compare the means of two popu-
lations. It is tempting to run pair-wise comparisons of the population means using 
multiple t-tests to answer the above questions. However, the probability of falsely 
rejecting at least one of the hypotheses increases as the number of t tests in-
creases. That is, although we may set the probability of Type I error at the 

0.05α =  level for each individual test, the probability of falsely rejecting at least 
one of those tests might be much larger than 0.05. For the above reason, multiple 
pairwise comparisons are recommended with Bonferroni correction. The Bon-
ferroni test is based on Student’s t statistic and adjusts the observed significance 
level based on the fact that multiple comparisons are made. This is simply done by 
multiplying the observed significance level by the number of comparisons  
made. Alternate statistical tests, including the analysis of variance, are described 
in [2, Ch. 10]. 

For the relative preference listening tests, one-sided t-tests need to be run to as-
sess whether algorithm A is preferred over algorithm B beyond the chance level, 
which is 50%. 

In summary, no reliable conclusions can be drawn based solely on the mean 
rating scores collected from subjective listening tests. The appropriate statistical 
test needs to be run to truly assess whether a particular algorithm improved (or 
not) speech quality. 
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3   Objective Quality Measures 

Subjective listening tests provide perhaps the most reliable method for assessment 
of speech quality.   These tests, however, can be time consuming requiring in most 
cases access to trained listeners. For these reasons, several researchers have inves-
tigated the possibility of devising objective, rather than subjective, measures of 
speech quality [1, ch. 2]. Ideally, the objective measure should be able to assess 
the quality of the processed speech without needing access to the original speech 
signal. The objective measure should incorporate knowledge from different levels 
of processing including low-level processing (e.g., psychoacoustics) and higher 
level processing such as prosodics, semantics, linguistics and pragmatics. The 
ideal measure should predict with high accuracy the results obtained from subjec-
tive listening tests with normal-hearing listeners.  In addition, it should take into 
account inherent differences between languages (e.g., Western languages vs. tonal 
languages) [28]. 

Much progress has been done in developing such an objective measure [1]. In 
fact, one such measure has been standardized [29]. Current objective measures are 
limited in that most require access to the original speech signal, and some can only 
model the low-level processing (e.g., masking effects) of the auditory system. Yet, 
despite these limitations some of these objective measures have been found to corre-
late well with subjective listening tests (e.g., MOS scores). A different class of 
measures, known as non-intrusive measures, does not require access to the original 
signal. Figure 2 shows how the conventional (also referred to as intrusive) measures 
and the non-intrusive measures are computed. This Chapter will focus primarily on 
the intrusive measures, as those measures have been studied the most. A brief intro-
duction and literature review on non-intrusive measures will also be given. 

System to
be tested

Non-intrusive
Evaluation

Intrusive
Evaluation

Predicted quality

Input
signal

Degraded
signal

 

Fig. 2. Computation of intrusive and non-intrusive objective measures 

Most objective measures of speech quality are implemented by first segmenting 
the speech signal into 10-30 ms frames, and then computing a distortion measure 
between the original and processed signals. A single, global measure of speech 
distortion is computed by averaging the distortion measures of each speech frame. 
More sophisticated objective measures [30,31] deviate from the above short-time 
frame-processing framework and also involve a time-delay estimation block for 
aligning the two signals prior to the distortion measure computation. As we  
will see shortly, the distortion measure computation can be done either in the time 
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domain (e.g., signal-to-noise ratio measures) or in the frequency domain (e.g., 
LPC spectral distance measures). For the frequency-domain measures, it is as-
sumed that any distortions or differences detected in the magnitude spectra are 
correlated with speech quality. Note that the distortion measures are not distance 
measures in the strict sense, as they do not obey all properties of a distance metric. 
For one, these measures are not necessarily symmetric and some (e.g., log spectral 
distance measure) yield negative values. Psychoacoustic experiments [32] suggest 
that the distance measures should not be symmetric [33]. 

A large number of objective measures has been evaluated, particularly  
for speech coding [1] and speech enhancement [34] applications. Reviews of ob-
jective measures can be found in [35-38]. Next, we focus on a subset of those 
measures.  

3.1   Time and Frequency Signal-to-Noise Ratio Measures 

The segmental signal-to-noise ratio can be evaluated either in the time or fre-
quency domain. The time-domain measure is perhaps one of the simplest objective 
measures used to evaluate speech enhancement or speech coding algorithms.  For 
this measure to be meaningful it is important that the original and processed sig-
nals be aligned in time and that any phase errors present be corrected.   The seg-
mental signal-to-noise (SNRseg) is defined as:  
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where ( )x n  is the original (clean) signal, ˆ( )x n  is the enhanced signal, N is the 

frame length (typically chosen to be 15-20 msecs), and M is the number of frames 
in the signal.  

One potential problem with the estimation of SNRseg is that the signal energy 
during intervals of silence in the speech signal (which are abundant in conversa-
tional speech) will be very small resulting in large negative SNRseg values, which 
will bias the overall measure. One way to remedy this is to exclude the silent 
frames from the sum in Eq. (1) by comparing short-time energy measurements 
against a threshold or by flooring the SNRseg values to a small value. In [39], the 
SNRseg values were limited in the range of [-10 dB, 35 dB] thereby avoiding the 
need for a speech/silence detector.  

The segmental SNR can be extended in the frequency domain to produce the 
frequency-weighted segmental SNR (fwSNRseg) [40]:  
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where jB  is the weight placed on the j th frequency band, K is the number of 

bands, M is the total number of frames in the signal, ( , )F m j  is the filter-bank am-

plitude (excitation spectrum) of the clean signal in the j th frequency band at the 

mth frame, and  ˆ ( , )F m j  is the filter-bank amplitude of the enhanced signal in the 

same band. The main advantage in using the frequency-based segmental SNR over 
the time-domain SNRseg (Eq. (1)) is the added flexibility to place different weights 
for different frequency bands of the spectrum. There is also the flexibility in choos-
ing perceptually-motivated frequency spacing such as critical-band spacing.  

Various forms of weighting functions jB  were suggested in [1,40].  One possi-

bility is to choose the weights jB  based on articulation index studies [41].  Such 

an approach was suggested in [1] with the summation in Eq. (2) taken over 16 ar-
ticulation bands spanning the telephone bandwidth (300-3400 Hz).  

3.2   Spectral Distance Measures Based on LPC 

Several objective measures were proposed based on the dissimilarity between all-
pole models of the clean and enhanced speech signals [1]. These measures assume 
that over short-time intervals speech can be represented by a pth order all-pole 
model of the form:  
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where ( )xa i  are the coefficients of the all-pole filter (determined using linear pre-

diction techniques), xG is the filter gain and ( )u n  is a unit variance white noise 

excitation. Perhaps two of the most common all-pole based measures used to 
evaluate speech-enhancement algorithms are the log likelihood ratio and Itakura-
Saito measures. Cepstral distance measures derived from the LPC coefficients 
were also used. 

The log-likelihood ratio (LLR) measure is defined as:  
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where T
xa  are the LPC coefficients of the clean signal, ˆ

T
xa  are the coefficients of 

the enhanced signal, and xR  is the ( 1) ( 1)p p+ × +  autocorrelation matrix (Toe-

plitz) of the clean signal.  This measure penalizes differences in formant peak lo-
cations.  

The Itakura-Saito (IS) measure is defined as follows: 
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where xG and x̂G are the all-pole gains of the clean and enhanced signals respec-

tively. Note that unlike the LLR measure, the IS measure penalizes differences in 
all-pole gains, i.e., differences in overall spectral levels of the clean and enhanced 
signals. This can be considered as a drawback of the IS measure, since psycho-
acoustic studies [42] have shown that differences in spectral level have minimal 
effect on quality. 

A gain-normalized spectral distortion (SD) measure is often used to assess the 
quality of coded speech spectra.  The SD measure evaluates the similarity of the 
LPC spectra of the clean and processed signals [3,33].  
   The LPC coefficients can also be used to derive a distance measure based on 
cepstrum coefficients. This distance provides an estimate of the log spectral dis-
tance between two spectra. The cepstrum coefficients can be obtained recursively 
from the LPC coefficients { }ja  using the following expression [43, p. 442]: 
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where p is the order of the LPC analysis (Eq. (3)). A measure based on cepstrum 
coefficients can be computed as follows [44]: 
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where ( )xc k  and ˆ ( )xc k  are the cepstrum coefficients of the clean and enhanced 

signals respectively.  

3.3   Perceptually-Motivated Measures 

The above objective measures are attractive in that they are simple to implement 
and easy to evaluate. However, their ability to predict subjective quality is limited 
as they do not closely emulate the signal processing involved at the auditory pe-
riphery. For one, the normal-hearing frequency selectivity as well as the perceived 
loudness were not explicitly modeled or incorporated in the measures. Much re-
search [42,45-50] has been done to develop objective measures based on models 
of human auditory speech perception, and in this section we describe some of 
these perceptually-motivated measures.  

3.3.1   Bark Distortion Measures 

Much progress has been made on modeling several stages of the auditory process-
ing, based on existing knowledge from psychoacoustics about how human listen-
ers process tones and bands of noise [51, ch. 3]. Specifically, these new objective 
measures take into account the fact that: 
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1. The ear’s frequency resolution is not uniform,  i.e., the frequency 
analysis of acoustic signals is not based on a linear frequency scale. 
This can be modeled by pre-processing the signal through a bank of 
bandpass filters with center frequencies and bandwidths increasing with 
frequency. These filters have come be known in the psychoacoustics 
literature as critical-band filters and the corresponding frequency spac-
ing as critical-band spacing. 

2. Loudness is related to signal intensity in a nonlinear fashion. This takes 
into account the fact that the perceived loudness varies with frequency 
[52,53]. 

One such measure that takes the above into account is the Bark distortion measure 
(BSD). The BSD measure for frame k is based on the difference between the 
loudness spectra and is computed as follows: 
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where ( ) and ( )k kS b S b  are the loudness spectra of the clean and enhanced signals 

respectively and bN  is the number of critical bands. The mean BSD measure is 

finally computed by averaging the frame BSD measures across the sentence. Ex-
periments in [46] indicated that the BSD measure yields large values for the low-
energy (unvoiced) segments of speech. This problem can be avoided by excluding 
the low-energy segments of speech from the BSD computation using a 
voiced/unvoiced detector. Improvements to the BSD measure were reported in 
[47,54,55] leading to the modified BSD measure (MBSD). Experiments in [46,47] 
indicated that both BSD and MBSD measures yielded a high correlation ( 0.9ρ > ) 

with MOS scores. Further improvements to the MBSD measure were proposed in 
[54,56]. 

3.3.2   Perceptual Evaluation of Speech Quality (PESQ) Measure 

Most of the above objective measures have been found to be suitable for assessing 
only a limited range of distortions which do not include distortions commonly en-
countered when speech goes through telecommunication networks. Packet loss, 
for instance, signal delays and codec distortions would cause most objective 
measures to produce inaccurate predictions of speech quality. A number of objec-
tive measures were proposed in the 1990s focusing on this type of distortions as 
well as filtering effects and variable signal delays [31,57,58]. 

A competition was held in 2000 by the ITU-T study group 12 to select a new 
objective measure capable of performing reliably across a wide range of codec and 
network conditions. The perceptual evaluation of speech quality (PESQ) measure,  
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described in [30], was selected as the ITU-T recommendation P.862 [29] replacing 
the old P.861 recommendation [59]. The latter recommendation proposed a quality 
assessment algorithm called perceptual speech quality measure (PSQM). The 
scope of PSQM is limited to assessing distortions introduced by higher-bit speech 
codecs operating over error-free channels. 

The structure of the PESQ measure is shown in Figure 3. The original (clean) 
and degraded  signals are first level equalized to a standard listening level, and fil-
tered by a filter with response similar to a standard telephone handset. The signals 
are aligned in time to correct for time delays, and then processed through an audi-
tory transform, similar to that of BSD, to obtain the loudness spectra. The absolute 
difference between the degraded and original loudness spectra is used as a meas-
ure of audible error in the next stage of PESQ computation. Note that unlike most 
objective measures (e.g., the BSD measure) which treat positive and negative 
loudness differences the same (by squaring the difference), the PESQ measure 
treats these differences differently. This is because positive and negative loudness 
differences affect the perceived quality differently. A positive difference would 
indicate that a component, such as noise, has been added to the spectrum, while a 
negative difference would indicate that a spectral component has been omitted or 
heavily attenuated. Compared to additive components, the omitted components are 
not as easily perceived due to masking effects, leading to a less objectionable form 
of distortion. Consequently, different weights are applied to positive and negative 
differences. The differences, termed the disturbances, between the loudness spec-
tra is computed and averaged over time and frequency to produce the prediction of 
subjective MOS score. The final PESQ score is computed as a linear combination 
of the average disturbance value symd  and the average asymmetrical disturbance 
value asymd  as follows:  

0 1 2sym asymPESQ a a d a d= + ⋅ + ⋅                        (9) 

where 
0 1 2

4.5,  0.1 and 0.0309a a a= = − = − . The range of the PESQ score is –0.5 to 4.5, 
although for most cases the output range will be a MOS-like score, i.e., a score be-
tween 1.0 and 4.5. High correlations (ρ > 0.92) with subjective listening tests were 
reported in [30] using the above PESQ measure for a large number of testing con-
ditions taken from mobile, fixed and voice over IP (VoIP) applications. The PESQ 
can be used reliably to predict the subjective speech quality of codecs (waveform 
and CELP-type coders) in situations where there are transmission channel errors, 
packet loss or varying delays in the signal. It should be noted that the PESQ meas-
ure does not provide a comprehensive evaluation of telephone transmission qual-
ity, as it only reflects the effects of one-way speech or noise distortion perceived 
by the end-user. Effects such as loudness loss, sidetone and talker echo are not re-
flected in the PESQ scores. More details regarding the PESQ computation can be 
found in [2, Ch. 10]. 
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Fig. 3. Block diagram of the PESQ measure computation 

3.4   Composite Measures 

In addition to the above measures, one can form the so called composite measures 
[1, Ch. 9] by combining multiple objective measures. The rational behind the use 
of composite measures is that different objective measures capture different char-
acteristics of the distorted signal, and therefore combining them in a linear or non-
linear fashion can potentially yield significant gains in correlations. Regression 
analysis can be used to compute the optimum combination of objective measures 
for maximum correlation. One possibility is to use the following linear regression 
model:  
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(10) 

where ( )f x  is the mapping function presumed to be linear, P is the number of 

objective measures involved, 1{ }N
i iy =  are the dependent variables corresponding to 

the subjective ratings of N samples of degraded speech, ijx  is the independent 

(predictor) variable corresponding to the jth objective measure computed for the 
ith observation (degraded sample or condition), and iε  is a random error associ-

ated with each observation. The regression coefficients iα  can be estimated to 

provide the best fit with the data using a least-squares approach [1, p. 184]. The P 
objective measures considered in (10) may include, among other measures, the 
LPC-based measures (e.g., IS, LLR), segmental SNR measures (e.g., SNRseg) or 
the PESQ measure. The selection of objective measures to include in the compos-
ite measure is not straightforward and in some cases it is based solely on experi-
mental evidence (trial and error) and intuition. Ideally, we would like to include 
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objective measures that capture complementary information about the underlying 
distortions present in the degraded signal. 

A linear function ( )f x  was assumed in (10) for mapping P objective measures 

to the observed subjective ratings, 1{ }N
i iy = . Such a model is accurate only when the 

true form of the underlying function is linear.  If it is not, then the modeling error 
will likely be large and the fit will be poor. Non-parametric models which make 
no assumptions about the form of the mapping function can alternatively be used.  
More specifically, models based on multivariate adaptive regression splines 
(MARS) have been found to yield better performance for arbitrary data sets [60]. 
Unlike linear and polynomial regression analysis, the MARS modeling technique 
is data driven and derives the functional form from the data. The basic idea of the 
MARS modeling technique is to recursively partition the domain into smaller sub-
regions and use spline functions to locally fit the data in each region. The number 
of splines used in each sub-region is automatically determined from the data. The 
MARS model has the following form:   
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where  ( )jB x  are the basis functions and M is the number of basis functions 

which are automatically determined from the data (note that M could be larger 
than the number of objective measures). The MARS technique has been success-
fully applied to speech quality evaluation in [34,61]. Radial basis functions were 
used in [49,50] for ( )jB x . Good correlations were obtained in [50] in terms of 

predicting the quality of noise-suppressed speech.  
While the composite measures always improve the correlation, caution needs to 

be exercised in as far using these measures with test speech materials and distor-
tions other than the ones that have been validated. The reason for this is that the 
composite measures need to be cross-validated with conditions not included in the 
training stage, hence they will perform the best when tested with the same speech 
materials containing processed speech with similar distortions. 

3.5   Non-intrusive Objective Quality Measures 

The above objective measures for evaluating speech quality are “intrusive” in na-
ture as they require access to the input (clean) signal. These measures predict 
speech quality by estimating the “distortion” between the input (clean) and output 
(processed) signals and then mapping the estimated “distortion” value to a quality 
metric.  In some applications, however, the input (clean) signal is not readily 
available and therefore the above objective measures are not practical or useful.  
In VoIP applications, for instance, where we are interested in monitoring continu-
ously the performance of telecommunication networks (in terms of speech  
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quality), we only have access to the output signal. In such cases, a non-intrusive  
objective measure of speech quality would be highly desirable for continuous 
monitoring of quality of speech delivered to a customer or to a particular point in 
the network. Based on such quality assessment, network traffic can be routed, for 
instance, through less congested parts of the network and therefore improve the 
quality of service. 

A fundamentally different approach is required to analyze a processed signal 
when the clean (reference) input signal is not available, and several non-intrusive 
measures have been proposed in the literature [61-67]. Some methods are based 
on comparing the output signal to an artificial reference signal derived from an 
appropriate codebook [65,66].  Other methods use vocal-tract models to identify 
distortions [63]. This latter method [63] first extracts a set of vocal-tract shape pa-
rameters (e.g., area functions, cavity size) from the signal, and then evaluates 
these parameters for physical production violations, i.e., whether the parameters 
could have been generated by the human speech-production system. Distortions 
are identified when the vocal-tract parameters yield implausible shape and cavity 
sizes. A variant of the vocal-tract method was adopted as the ITU-T P.563 [68] 
standard for non-intrusive evaluation of speech quality. More information on non-
intrusive methods can be found in [62]. 

3.6   Evaluation of Objective Quality Measures 

So far we have not yet discussed what makes a certain objective measure better 
than other. Some objective measures are “optimized” for a particular type of dis-
tortion and may not be meaningful for another type of distortion. The task of 
evaluating the validity of objective measures over a wide range of distortions is 
immense [1]. A suggested process to follow is to create a large database of speech 
distorted in various ways and evaluate the objective measure for each file in the 
database and for each type of distortion [1, ch 1]. At the same time, the distorted 
database needs to be evaluated by human listeners using one of the subjective lis-
tening tests (e.g., MOS test) described above. Statistical analysis needs to be used 
to assess the correlation between subjective scores and the values of the objective 
measures. For the objective measure to be valid and useful, it needs to correlate 
well with subjective listening tests. A discussion is given next on how to assess 
the predictive power of objective measures followed by a presentation of some of 
the measures that have been found to correlate well with listening tests. 

3.6.1   Figures of Merit 

The correlation between subjective listening scores and objective measures can be 
obtained using the Pearson’s correlation coefficient which is computed as follows:  
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where dS are the subjective quality ratings, dO  are the values of the objective 

measure, and dS  and dO  are the mean values of dS  and dO  respectively. This 

correlation coefficient ρ  can be used to predict the subjective results based on the 

values of the objectives measures as follows: 

( )P
k k

O

P P O O
σρ
σ

= + −
                           

(13) 

where kO denotes the value of the objective measure obtained for the kth speech 

file in the database, kP  denotes the predicted subjective listening score, Pσ  and 

Oσ  denote the standard deviations of the subjective and objective scores respec-

tively,  P  and O  denote the mean values of the subjective and objective scores 
respectively. Note that Eq. (13) is based on first-order linear regression analysis 
assuming a single objective measurement. Higher order polynomial regression 
analysis could also be used if the objective measure is composed of multiple 
measurements  [1, ch. 4.5].  

A second figure-of-merit is an estimate of the standard deviation of the predic-
tion error obtained by using the objective measures to predict the subjective listen-
ing scores. This figure-of-merit is computed as:  

21e Pσ σ ρ= −                                    (14) 

where eσ  is the standard error of the estimate. The standard error of the estimate 

of the subjective scores provides a measure of variability of the subjective scores 
about the regression line, averaged over all objective scores. For good predictabil-
ity of the subjective scores, we would like the objective measure to yield a small 
value of eσ . Both figures of merit, i.e., correlation coefficient and standard error 

of the estimate eσ , need to be reported when evaluating objective measures.  In 

some cases, histograms of the absolute residual errors, computed as the difference 
between the predicted and actual scores, can provide valuable information similar 
to that provided by eσ . Such histograms can provide a good view of how fre-

quently errors of different magnitudes occur. 
An alternative figure-of-merit to eσ  is the root-mean-square error (RMSE) be-

tween the per condition averaged objective measure and subjective ratings com-
puted over all conditions: 
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where iS indicates the averaged subjective score in ith condition, iO indicates the 

averaged objective score in ith condition and M is the total number of conditions. 
The above analysis assumes that the objective and subjective scores are linearly 

related (see Eq. (13)). This is not always the case, however, and in practice, it is 
not easy to uncover the best-fitting function or the true relationship between  
the objective and subjective measurements. Scatter plots of the rating scores vs. 
objective scores can provide valuable insights in terms of unveiling the relation-
ship between the objective and subjective measurements. Some found a better fit 
with a quadratic relationship [44,46] while others found a good fit with a logistic 
function [69]. Kitawaki et al .[44], for instance, derived a quadratic expression for 
predicting MOS scores from cepstral distance measures for Japanese speech. Non-
parametric regression techniques, such as the MARS technique [60] can alterna-
tively be used to uncover the mapping function between (multiple) objective 
measures and subjective ratings (see Section 3.4).  

3.6.2   Correlations of Objective Measures with Subjective Listening Tests 

Objective measures need to be validated with ratings obtained in subjective listen-
ing tests with human listeners. The choice of objective measures needs to be made 
carefully depending on the application, language and type of distortions present in 
the processed speech.  

For distortions introduced by speech coders, for instance, the objective meas-
ures investigated in [1] are appropriate. High correlations (ρ >0.9) were obtained 
primarily with composite and frequency-variant measures. The LPC-based meas-
ures performed modestly well ( 0.62ρ < ). The SNRseg measure performed well, 
but only for distortions introduced by waveform speech coders (e.g., ADPCM). 
This suggests that the SNRseg measure is only appropriate for evaluating speech 
processed via waveform coders. For distortions, such as clipping,  introduced by 
hearing aids the coherence-based measures reported in [70,71] are appropriate. 

For distortions introduced by speech-enhancement algorithms, the objective 
measures discussed and evaluated in [34] are appropriate. These measures were 
evaluated using the publicly available noisy speech corpus (NOIZEUS2), which 
was used in a comprehensive subjective quality evaluation [72] of 13 different 
speech enhancement algorithms encompassing four different classes of algo-
rithms: spectral subtractive, subspace, statistical-model based and Wiener-filtering 
type algorithms. The enhanced speech files were sent to Dynastat, Inc (Austin, 
TX) for subjective evaluation using the standardized methodology for evaluating 
noise suppression algorithms based on ITU-T P.835 [16]. The use of ITU-T P.835 
methodology yielded three rating scores for each algorithm: an overall quality rat-
ing, a signal distortion rating and a background distortion rating. A summary of 
the resulting correlations is given in Table 7 for a subset of the objective measures 
tested. 

                                                           
2 Available at: http://www.utdallas.edu/~loizou/speech/noizeus/  
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Table 7. Estimated correlation coefficients ( | |ρ ) of objective measures with overall qual-

ity, signal distortion and background noise distortion [34] 

Objective measure Overall  
quality 

Signal  
distortion 

Background 
distortion 

SegSNR 0.36 0.22 0.56 

Weighted spectral slope 
(WSS) [87] 

0.64 0.59 0.62 

PESQ 0.89 0.81 0.76 

Log-likelihood ratio (LLR) 0.85 0.88 0.51 

Itakura-Saito distance (IS) 0.60 0.73 0.09 

Cepstrum distance (CEP) 0.79 0.84 0.41 

fwSNRseg  0.85 0.87 0.59 

Modified PESQ  0.92 0.89 0.76 
 

In addition to several conventional objective measures (most of which were de-
scribed in this Section), modifications to the PESQ measure were also considered 
in [34].  As it was not expected that the PESQ measure would correlate highly 
with all three rating scores (speech distortion, noise distortion and overall quality), 
the PESQ measure was optimized for each of the three rating scales by choosing a 
different set of parameters ( 0 1 2, ,a a a ) in Eq. (9) for each rating scale. Multiple lin-

ear regression analysis was used to determine the values of the  parameters 

0 1 2, ,a a a . Of the seven basic objective measures tested, the PESQ measure yielded 

the highest correlation ( 0.89ρ = ) on overall quality, followed by the fwSNRseg 

and LLR  measures ( 0.85ρ = ). Even higher correlation with overall quality was 

obtained with the modified PESQ measure ( 0.92ρ = ). The majority of the basic 

objective measures predicted equally well signal distortion and overall quality, but 
not background distortion. This was not surprising given that most measures take 
into account both speech-active and speech-absent segments in their computation. 
Measures that would place more emphasis on the speech-absent segments would 
be more appropriate and likely more successful in predicting noise distortion. The 
SNRseg measure, which is widely used for evaluating the performance of speech 
enhancement algorithms, yielded a very poor correlation coefficient ( 0.31ρ = ) 

with overall quality. This outcome suggests that the SNRseg measure is unsuitable 
for evaluating the performance of enhancement algorithms.  

In summary, the PESQ measure has proved to be the most reliable measure for 
assessing speech quality. Consistently high correlations were noted for speech 
processed by speech codecs and telephone networks [30] as well as for noisy  
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speech processed by speech-enhancement algorithms [34]. High correlations were 
also obtained with the PESQ measure in Mandarin Chinese speech processed 
through various speech codecs [73]. Although not designed to predict speech intel-
ligibility, the PESQ measure has also yielded a modestly high correlation 
( 0.79ρ = ) with intelligibility scores [74], at least when tested with English 

speech. Modifications of the PESQ measure for Mandarin Chinese were reported 
in [28]. High correlation with speech intelligibility was also obtained with the 
fwSNRseg measure (Eq. (2)). 

4   Challenges and Future Directions in Objective Quality 
Evaluation 

Presently, there is no single objective measure that correlates well with subjective 
listening evaluations for a wide range of speech distortions. Most measures have 
been validated for a specific type of distortion and for a specific language. Some 
measures correlate well with distortions introduced by speech coders while others 
(e.g., PESQ measure) correlate well with distortions introduced by telecommuni-
cation networks and speech-enhancement algorithms. While the PESQ measure 
has been shown to be a robust objective measure, it is computationally demanding 
and requires access to the whole utterance. In some applications, this might not be 
acceptable. Ideally, the objective measure should predict the quality of speech in-
dependent of the type of distortions introduced by the system whether be a net-
work, a speech coder or a speech enhancement algorithm. This is extremely chal-
lenging and would require a deeper understanding of the human perceptual 
processes involved in quality assessment. 

For one, little is known as to how we should best integrate or somehow com-
bine the frame computed distance measures to a single global distortion value. The 
simplest approach used in most objective measures is to compute the arithmetic 
mean of the distortions computed in each frame, i.e.,  

1

0

1
( , )

M

k k
k

D d
M

−

=

= ∑ x x
                           

(15) 

where M is the total number of frames, D denotes the global (aggregate) distor-
tion, and ( , )k kd x x  denotes the distance between the clean and processed signals 

in the kth frame. This distance measure could take, for instance, the form of either 
(4), (5), or (8). The averaging in Eq. (15) implicitly assumes that all frames 
(voiced, unvoiced and silence) should be weighted equally, but this is not neces-
sarily consistent with quality judgments. For one, the above averaging does not 
take into account temporal (forward or backward) masking effects.  

 Alternatively, we can consider using a time-weighted averaging approach to 
estimate the global distortion, i.e., 
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where ( )w k  represents the weighting applied to the kth frame. Computing the 

frame weights, ( )w k , however, is not straightforward and no optimal methods (at 

least in the perceptual sense) exist to do that.  
Accurate computation of ( )w k would require a deeper understanding of the fac-

tors influencing quality judgments at least at two conceptual levels: the supraseg-
mental (spanning syllables or sentences) and the segmental (spanning a single 
phoneme) levels. At the suprasegmental level we need to know how humans inte-
grate information across time, considering at the very least temporal (non-
simultaneous) masking effects such as forward and backward masking. Forward 
masking is an auditory phenomenon which occurs when large energy stimuli 
(maskers) precede in time, and suppress (i.e., mask) later arriving and lower  
energy stimuli from detection. In the context of speech enhancement, this means 
that the distortion introduced by the noise-reduction algorithm may be detectable 
beyond the time window in which the signal and distortion are simultaneously pre-
sent. Masking may also occur before the masker onset and the corresponding ef-
fect is called backward masking [75,ch. 4]. Back-ward masking effects are rela-
tively short (less than 20ms), but forward-masking effects can last longer than 100 
msecs [75, ch. 4.4] and its effects are more dominant. Attempts to model forward 
masking effects were reported in [1, p. 265,45,55].  

At the segmental (phoneme) level, we need to know which spectral characteris-
tics (e.g., formants, spectral tilt, etc) of the signal affect quality judgments the 
most.  These characteristics might also be language dependent [76], and the objec-
tive measure needs to take that into account (e.g., [28]). We know much about the 
effect of spectral manipulations on perceived vowel quality but comparatively lit-
tle on consonant quality [42,77]. Klatt [42] demonstrated that of all spectral  
manipulations (e.g., low-pass filtering, notch filtering, spectral tilt) applied to 
vowels, the formant frequency changes had the largest effect on quality judg-
ments. His findings, however, were only applicable to vowels and not necessarily 
to stop consonants or any other sound class.  For one, Klatt concluded that spectral 
tilt is unimportant in vowel perception [42], but that is not the case however in 
stop-consonant perception. We know from the speech perception literature that 
spectral tilt is a major cue to stop place of articulation [78, ch. 6,79].  Some [79] 
explored the idea of constructing a spectral template that could be associated with 
each place of stop articulation, and used those templates to classify stops. In brief, 
the stop consonants, and possibly the other consonants, need to be treated differ-
ently than vowels, since different cues are used to perceive consonants.   

There has been a limited number of proposals in the literature on how to esti-
mate the weights ( )w k in (16) or how to best combine the local distortions to a 

single global distortion value [1,1, ch. 7,45,69,80,81]. In [80,82], the weights 
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( )w k  were set proportional to the frame energy (raised to a power) thereby plac-

ing more emphasis on voiced segments. This approach, however, did not yield any 
significant benefits as far as obtaining a better correlation with subjective listening 
tests [1, p. 221,82]. A more successful approach was taken in [83] for assessing 
distortions introduced by hearing aids. Individual frames were classified into three 
regions relative to the overall RMS level of the utterance, and the objective meas-
ure was computed separately for each region. The high-level region consisted of 
segments at or above the overall RMS level of the whole utterance. The mid-level 
region consisted of segments ranging from the overall RMS level to 10 dB below, 
and the low-level region consisted of segments ranging from RMS-10 dB to RMS-
30 dB. A similar approach was also proposed in [84]. 

Rather than focusing on finding suitable weights for Eq. (16), some have pro-
posed alternative methods to combine the local distortions into a single global dis-
tortion value. In [80], a classifier was used to divide the speech frames into four 
distinct phonemic categories: vocalic, nasal, fricative and silence. A separate dis-
tortion measure was used for each phonemic class and the global distortion was 
constructed by linearly combining the distortions of the four classes. A similar ap-
proach was also proposed in [81] based on statistical pattern-recognition princi-
ples.  The underlying assumption in these segmentation-based methods is that the 
distortion in various classes of sounds is perceived differently, and therefore a dif-
ferent weight ought to be placed to each class. It is not yet clear what those 
weights should be, and further research based on psychoacoustic experiments is 
needed to determine that. 

A different approach for combining local distortions was proposed in [69] 
based on the assumption that the overall perceived distortion consists of two com-
ponents. The first component takes the average distortion into account by treating 
all segments (frames) and all frequencies equally. The second component takes 
into account the distribution of the distortion over time and frequency. That is, it 
takes into consideration the possibility that the distortion might not be uniformly 
distributed across time/frequency but concentrated into a local time or frequency 
region. The latter distortion is computed using an information-theoretic measure 
borrowed from the video coding literature [85]. This measure, which is based on 
entropy, quantifies roughly the amount of information contained in each time-
frequency cell and assigns the appropriate weight accordingly. The measuring 
normalizing blocks (MNB) algorithm [31] utilizes a simple perceptual transform, 
and a hierarchical structure of integration of distance measurements over a range 
of time and frequency intervals. 

In most objective quality measures, the distortion is computed as the difference 
between the auditory spectra of the clean and processed signals or as the differ-
ence of their all-pole spectra (e.g., LPC) representations. This difference is com-
monly squared to ensure positivity of the distance measure. Squaring this differ-
ence, however, assumes that the positive and negative differences contribute 
equally to the perceived quality. But as mentioned earlier, that is not the case.  
A positive difference might sometimes be perceived more harshly and therefore  
be more objectionable than a negative difference. This is because the omitted  
components (produced by a negative difference) might sometimes be masked and 
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therefore become inaudible. Objective measures should therefore treat positive 
and negative distortions differently. Yet, only a few objective measures take into 
account this asymmetrical effect of auditory spectra differences on quality judg-
ments [30,31,86].  

To summarize, further research is needed to address the following issues and 
questions for better objective quality evaluation: 

1. At the suprasegmental level, we need a perceptually meaningful way 
to compute the weights ( )w k  in (16), modeling at the very least 

temporal (forward) masking effects. 
2. At the segmental (phoneme) level, we need to treat consonants dif-

ferently than vowels since perceptually we use different cues to iden-
tify consonants and vowels. Certain spectral characteristics of the 
consonants and vowels need to be emphasized or deemphasized in 
the distortion calculation, and these characteristics will likely be dif-
ferent.  

3. A different weight needs to be placed on positive and negative dif-
ferences of the auditory spectral representation of the clean and 
processed signals. 

To address the above issues, it will require a better understanding of the factors in-
fluencing human listeners in making quality judgments. For that, perception ex-
periments similar to those reported in [42,45,77]  need to be conducted.  

5   Summary 

This Chapter presented an overview of the various techniques and procedures  
that have been used to evaluate the quality of processed speech. A number of  
subjective listening tests were described for evaluating speech quality. These tests 
included relative preference methods and absolute category rating methods (e.g., 
MOS, DAM). The ITU-T P.835 standard established for evaluating quality  
of speech processed by noise-reduction algorithms was also described. Lastly,  
a description of common objective quality measures was provided. This  
included segmental SNR measures, spectral distance measures based on LPC  
(e.g., Itakura-Saito measure) and perceptually motivated measures (e.g., bark dis-
tortion measure, PESQ measure). The segmental SNR measure, which is often 
used to assess speech quality, was not found to correlate well with subjective  
rating scores obtained by human listeners, and should not be used. The  
PESQ measure has been proven to be the most reliable objective measure for as-
sessment of speech quality [30,34], and to some degree, speech intelligibility [74]. 
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