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Abstract—The performance of cochlear implants deteriorates5
in noisy environments compared to quiet conditions. This paper6
presents an adaptive cochlear implant system, which is capable of7
classifying the background noise environment in real time for the8
purpose of adjusting or tuning its noise suppression algorithm to9
that environment. The tuning is done automatically with no user10
intervention. Five objective quality measures are used to show the11
superiority of this adaptive system compared to a conventional12
fixed noise-suppression system. Steps taken to achieve the real-13
time implementation of the entire system, incorporating both the14
cochlear implant speech processing and the background noise sup-15
pression, on a portable PDA research platform are presented along16
with the timing results.17

Index Terms—Automatic tuning of noise suppression, charac-18
terization of noisy environments, noise adaptive cochlear implants,19
real-time implementation of cochlear implant speech processing.20

I. INTRODUCTION21

MORE than 118 000 people around the world have re-22

ceived cochlear implants (CIs) [1]. Since the introduc-23

tion of CIs in 1984, their performance in terms of speech in-24

telligibility has considerably improved. However, their perfor-25

mance in noisy environments still remains a challenge. Speech26

understanding with cochlear implants is reportedly good in27

quiet environments but is shown to greatly degrade in noisy28

environments [2], [3]. Several speech enhancement algorithms,29

e.g., [4], [5], have been proposed in the literature to address the30

performance gap in noisy environments. However, no real-time31

strategy has been offered to automatically tune these algorithms32

in order to obtain improved performance across different kinds33

of background noise environments encountered in daily lives by34

CI patients.35

In [6]–[10], a number of speech enhancement algorithms are36

discussed which provide improved performance for a number37

of noisy environments. In this paper, we have developed an38

automatic mechanism to tune or adjust the noise suppression39
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component to different noisy environments in a computation- 40

ally efficient (real-time) manner. The motivation here has been 41

to improve performance of CIs by allowing them to automat- 42

ically adapt to different noisy environments. The real-time re- 43

quirement is the key aspect of our developed solution as any 44

computationally intensive approach is not practically useable 45

noting that the processors that are often used in CIs have limited 46

computing and memory resources. 47

More specifically, a real-time CI system is developed in this 48

study, which is capable of automatically classifying the acous- 49

tic environment with the intent of adopting noise suppression 50

parameters that are optimized for the selected environment. The 51

classification is done in such a way that the computation bur- 52

den to the CI speech-processing pipeline is kept to a minimum. 53

Depending on the output of the noise classification stage, the 54

system automatically and on-the-fly, switches to those parame- 55

ters which provide optimal performance for a specific noisy en- 56

vironment. For the speech-processing pipeline, our previously 57

developed n-of-m strategy using the recursive wavelet decom- 58

position method is utilized [11], [12]. It is worth mentioning 59

that this method can be easily replaced by the classical n-of-m 60

strategy using fast Fourier transform (FFT). 61

The rest of the paper is organized as follows. Section II de- 62

scribes the developed noise adaptive CI system. Section III 63

covers a detailed explanation of the components, which are 64

introduced in this paper, namely noise detector, noise feature 65

extraction, noise classification, and noise suppression. Section 66

IV includes a discussion on the real-time implementation of the 67

complete CI system as shown in Fig. 1 and the steps taken to 68

ensure its real-time operation on a PDA platform. Section V 69

discusses the performance of the newly introduced components 70

or blocks of the developed system. Finally, the conclusions are 71

stated in Section VI. 72

II. NOISE ADAPTIVE COCHLEAR IMPLANT SYSTEM 73

The proposed CI system is capable of detecting a change 74

in the background noise with no user intervention, and changes 75

the noise suppression parameters to previously determined (dur- 76

ing training) optimal parameters for that particular background 77

noise. A block diagram of the proposed adaptive system is 78

shown in Fig. 1. First, the input speech signal is windowed and 79

decomposed into different frequency bands. Most commercial 80

CIs use a filterbank or FFT to achieve this decomposition [13]. 81

As discussed in [11], we showed the advantages of using the 82

recursive wavelet packet transform (WPT) for the decomposi- 83

tion. Based on the previously developed noise-suppression algo- 84

rithm in [8]–[10], noise is suppressed by appropriately applying 85

0018-9294/$31.00 © 2012 IEEE
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Fig. 1. Block diagram of the developed noise-adaptive cochlear implant system implemented on a PDA platform in real time; highlighted blocks indicate the
new blocks that were introduced in this study.

a noise-suppressive gain function to the magnitude spectrum.86

From the suppressed magnitude spectrum, channel envelopes87

are extracted by combining the wavelet packet coefficients of88

the bands, which fall in the frequency range of a particular89

channel. Finally, the envelopes are compressed using a loga-90

rithmic compression map. Based on these compressed channel91

envelopes, the amplitude of stimulating pulses for CI implanted92

electrodes is determined.93

In a parallel path to the aforementioned speech processing94

path, the first stage of the WPT coefficients of the windowed95

signal are used to detect whether a current speech segment is96

voiced/ unvoiced speech or noise via a noise detector. If the97

input windowed segment is found to be noise, signal features98

are extracted using the wavelet packet coefficients that are al-99

ready computed from the speech processing path. The extracted100

feature vector is fed into a Gaussian mixture model (GMM)101

classifier to identify the background noise environment. When102

a change in the background noise is detected, the noise suppres-103

sion parameters of the system switch to the optimized parame-104

ters of the detected environment.105

According to the hearing aid study done in [14], hearing aid106

users spend about 25% of their time, on average, in quiet envi-107

ronments while the remaining 75% of their time is distributed108

among speech, speech in noise and noisy environments. The109

different background noise environments encountered in the110

daily lives of hearing-aid users depend on many demographic111

factors such as age, life style, living place, working place, etc.112

Hearing aid data logging studies have provided usage statistics113

in different environments. The study reported in [15] discusses114

commonly encountered environments in which hearing aid pa-115

tients expressed that it is important for them to be able to hear116

clearly in those environments.117

Using similar data logging studies for CIs, it would be pos-118

sible to get usage statistics of CIs in different environments.119

However, in the absence of such studies for CIs, here we have120

chosen ten commonly encountered environments mentioned121

in [15] with the assumption that the most frequently visited122

environments of CI and hearing aid users are similar. The ten 123

background noise classes considered in this study include car, 124

office, apartment living room, street, playground, mall, restau- 125

rant, train, airplane, and place of worship. Our system is de- 126

signed in such a way that additional noise classes can be easily 127

incorporated into it. It should be pointed out that in response to 128

a noise class, which is not present in the aforementioned noise 129

classes, the system selects the class with the closest matching 130

noise characteristics. 131

III. SYSTEM COMPONENTS 132

A. Voice Activity Detector 133

For extracting noise features, it is required to determine if a 134

captured data frame contains speech plus noise or noise only. 135

After deciding that it is a noise-only frame, noise signal features 136

get extracted and a noise classifier gets activated. In order to 137

determine the presence of noise-only frames, a voice activity 138

detector (VAD) is used. There are a number of VADs that have 139

been proposed in the literature. Some of the well-known ones 140

include ITU recommended G.729b, signal-to-noise ratio (SNR)- 141

based, zero-crossing-rates-based, statistical-based, and HOS- 142

based VADs [16]–[19]. 143

In this paper, we have considered a noise detector based on the 144

WPT since this transform is already computed as part of our CI 145

speech-processing pipeline in order to limit the computational 146

burden on the overall system. This noise detector or VAD was 147

proposed in [19], where the subband power difference is used to 148

distinguish between speech and noise frames. Subband power is 149

computed using the wavelet coefficients from the first level WPT 150

coefficients of the input speech frame. Then, the subband power 151

difference (SPD) between the lower frequency band and the 152

higher frequency band is computed, as given in (1). Next, SPD 153

is weighted as per the signal power, as shown in (2), and the result 154

is compressed such that it remains in the same range for differ- 155

ent speech segments as indicated in (3). A first-order low-pass 156
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filter is also used at the end to smooth out any fluctuations157

SPD (m) =

∣
∣
∣
∣
∣

N /2
∑

n =1

(
ψ0

1 ,m (n)
)2 −

N /2
∑

n =1

(
ψ1

1 ,m (n)
)2

∣
∣
∣
∣
∣

(1)

Dw (m) = SPD (m)

[
1
2

+
16

log (2)
log

(

1 + 2
∑N

n =1
ym (n)2

)]

(2)

Dc (m) =
1 − e−2D w (m )

1 + e−2D w (m ) (3)

where ym (n) is the input speech signal of the mth window with158

each window containing N samples, ψ0
1,m (n) and ψ1

1,m (n)159

are the wavelet coefficients corresponding to the lower and160

higher frequency bands, respectively, at the first level of the161

decomposition.162

To differentiate between noise and speech, a threshold Tv (m)163

is computed using an adaptive percentile filtering approach.164

Percentile filtering is applied to a sorted array of smoothed and165

compressed subband power difference Dc . The sorted array Dcs166

has B number of Dc values corresponding to past 1-s segments.167

The threshold is computed using the first value of Dcs as given in168

(4) which satisfies the condition shown in (5). Considering that169

statistics of sustained noise do not change as fast as speech, the170

threshold value is updated slowly using a single-pole low-pass171

filter as indicated in (6) with αv = 0.975. A speech or noise172

decision is made if the Dc (m) value is greater than or less than173

the threshold value Tv (m)174

T̃v (m) = Dcs (b) (4)

Dcs (b) − Dcs (b − 4) > 0.008 ∀b = 4 . . . B (5)

Tv (m) = αvTv (m − 1) + (1 − α) T̃v (m) . (6)

Unvoiced segments are generally difficult to detect and they175

are often mistaken as noise-only frames. Unvoiced frames often176

occur before or after voiced frames. Hence, the frames which177

are detected as noise frames just after voiced frames are still178

treated as speech. In other words, a guard time of 200 ms af-179

ter voiced segments is considered noting that most consonants180

do not last longer than 200 ms on average [20]. This reduces181

the likelihood of treating unvoiced frames as noise. It should182

be mentioned that this noise detector is not used to update the183

noise spectrum in the noise suppression component. Thus, this184

extra guard time does not harm the noise tracking speed and its185

bias over detecting speech. It is also important to note that this186

noise detector does not depend on any training and it can oper-187

ate across various SNR levels. Fig. 2 shows the noise detector188

applied to a stimulus consisting of two IEEE sentences “The189

birch canoe slid on the smooth planks” and “Glue the sheet to190

the dark blue background”, recorded at 8 kHz and produced by191

a male speaker. There is a 1-s pause between the two sentences.192

The bottom two plots in Fig. 2 show the noise detector output193

with the guard time for the same signal without noise (i.e., in194

quiet) and when corrupted by car noise at 5-dB SNR.195

Fig. 2. (Top to bottom) Noise detector output of clean speech signal without
guard time correction, noise detector output of clean speech signal with guard
time correction, and noise detector output of corrupted speech signal by car
noise at 5-dB SNR with guard time correction.

B. Noise Features 196

Various features have been utilized in the literature for noise 197

characterization. For example, time domain features includ- 198

ing zero-crossing rate, short-time energy, energy entropy, en- 199

velope modulation spectra in auditory critical bands have been 200

used [22], as well as spectral domain features such as spectral 201

roll off, spectral centroid, spectral flux, and harmonicity mea- 202

sure [23]. Noise features derived from LPC and wavelet trans- 203

forms are also widely used [24]–[26]. In our previous work [27], 204

we introduced Markov random field-based features operating 205

on spectrograms [28]. For the developed system, we exam- 206

ined various combinations of the aforementioned time domain, 207

spectral domain, mel-frequency cepstral coefficients (MFCC), 208

and Markov random field-based features. Among various fea- 209

ture combinations examined, it was found that the MFCC + 210

ΔMFCC features (26-dimensional feature vector) provided the 211

best compromise between a high classification rate and a low 212

computational complexity allowing the real-time implementa- 213

tion of the entire system. Other combinations either did not 214

provide as high classification rates or were computationally in- 215

tensive and did not allow a real-time throughput to be obtained. 216

To compute the MFCC coefficients, an overlapping triangu- 217

lar filter is applied to the magnitude spectrum of the WPT in 218

order to obtain a mel-scale spectral representation. Here, 40 tri- 219

angular filters are used, i.e., the 64-frequency bands magnitude 220

spectrum is mapped to 40 bins in mel scale. The first 13 fil- 221

ters are spaced linearly and the remaining 27 filters are placed 222

such that the bandwidth increases logarithmically. A discrete 223

cosine transform is then applied to the logarithm of the magni- 224

tude spectrum in mel scale, thus generating 13 MFCCs in total. 225

The first derivatives of MFCCs (ΔMFCC) are also computed 226

as described in the following: 227

ΔMFCC (m, p) = MFCC (m, p) − MFCC (m − 1, p) (7)
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where MFCC (m, p) represents the pth MFCC coefficient of228

the mth window.229

C. Environmental Noise Classifier230

Different classifiers have been used to classify speech, noise,231

and music, or different sound classes. The main classifiers stud-232

ied consist of neural network (NN), K-nearest neighbor (KNN),233

support vector machine (SVM), GMM, and hidden Markov234

model [22]–[26], [29]. In our previous work [30], we used an235

SVM classifier with radial basis kernel and showed that this236

classifier provided high classification rates among a number of237

different classifiers for a two-class noise classification problem.238

However, the implementation of an SVM classifier is computa-239

tionally expensive for the multiclass noise classification problem240

of interest here due to the large number of projections of features.241

We examined NN, KNN, Bayesian, SVM, and GMM classifiers242

and found that the GMM classifier with two clusters per class243

yielded the right balance between computational complexity for244

real-time implementation and classification performance.245

The GMMs were trained as follows. The mean, covariance,246

and the prior probability of the GMM clusters are first deter-247

mined for each noise class. For each noise class, k-means clus-248

tering is used to determine initial values of the aforementioned249

cluster parameters. These values are then fed into the expectation250

maximization (EM) algorithm to reach the optimum parameters.251

In each EM step, an expectation or the probability of training252

data generated from the current set of parameters is computed.253

The parameters are then updated for next iteration such that the254

expectation is increased. The training process is stopped when255

the log likelihood computed on training data does not increase256

significantly from the previous iteration. A fivefold cross vali-257

dation is used to ensure that the trained model is not dependent258

on any specific training data set. It is worth pointing out that259

training is carried out offline and is not an issue for the real-time260

operation of the system.261

D. Noise Suppression262

As stated earlier, several environment-specific noise-263

suppression algorithms have appeared in the literature. Most of264

these algorithms are computationally intensive and do not meet265

our real-time requirement. For our system, we have deployed266

a combination of the noise suppression algorithms appearing267

in [8]–[10], which model the noise statistics using a data-driven268

approach. The primary idea is to apply a lower weight to those269

frequency bins which are masker dominated compared to target270

dominated such that target dominated bands get selected for the271

stimulation of electrodes. The challenge here is to accurately272

track noise so that noise power is not overestimated or under-273

estimated. Overestimation leads to excessive removal of speech274

in the enhanced signal leaving the speech distorted and unintel-275

ligible, and underestimation leads to greater amount of residual276

noise. There are several methods for tracking the noise spectrum.277

In general, these methods attempt to update the noise spectrum278

using the corrupted speech spectrum with a greater amount of279

confidence when the probability of speech presence goes low.280

In what follows, we briefly describe our deployment of the data-281

driven approach for noise tracking, which was proposed in [9] 282

and [10]. It should be noted that other tunable noise-suppression 283

algorithms can be used in our system provided that they can be 284

made to run in real time. 285

Let us consider an additive noise scenario, (8) with 286

clean, noise and noisy received signals represented by 287

xm (n), dm (n) and ym (n), respectively, where m denotes the 288

window number. The equivalent short-time DFT is given in (9), 289

where k represents the frequency bin of FFT. A priori and a 290

posteriori SNRs for the speech spectral estimation are given as 291

follows: 292

ym (n) = xm (n) + dm (n) (8)

Ym (k) = Xm (k) + Dm (k) (9)

ξm (k) =
λx(k)
λd(k)

, γm (k) =
Y 2

m (k)
λd(k)

(10)

where ξm (k) denotes the a priori SNR, γm (k) denotes a poste- 293

riori SNR at the frequency bin k, λd denotes the noise variance 294

and λx denotes the clean speech variance. A priori SNR and a 295

posteriori SNRs are obtained by using the “decision-directed” 296

approach as 297

ξ̂m (k) = αdd

̂X2
m−1

λ̂d(k)
+ (1 − αdd) max

(

Ŷ 2
m (k)

λ̂d(k)
− 1, ξmin

)

(11)

Ŷm (k) =
Ŷ 2

m (k)

λ̂d(k)
(12)

where αdd is a smoothing parameter [9], [10], and ξmin is a small 298

number greater than 0. According to [10], the use of the nonideal 299

a priori SNR estimate, which is derived using the speech spectral 300

estimation of the previous window leads to erroneous spectral 301

estimates. This error gets fed back into the system. To minimize 302

this error, a modified a priori SNR estimate, ̂ξN T m , based on 303

the previous noisy speech spectra (rather than enhanced spectra) 304

is considered as shown in the folowing: 305

̂ξN T m (k) = αN T
Y 2

m−1(k)

λ̂d(k)

+ (1 − αN T ) max

(

Y 2
m (k)

λ̂d(k)
− 1, ξmin

)

. (13)

306

The noise variance and speech spectra are then obtained ac- 307

cording to the weighted spectra specified in (14) and (15), where 308

the weight (gain) is a function of a priori and a posteriori SNR 309

estimates 310

λ̂d(k) = GD

(

̂ξN T m (k), γ̂m (k)
)

Y 2
m (k) (14)

X̂2
m (k) = GX

(

ξ̂m (k), γ̂m (k)
)

Y 2
m (k) (15)

where GD is derived using the data-driven approach with the 311

gain function determined using the minimum mean square er- 312

ror (MMSE) criteria, and Gx is derived using the log-MMSE 313
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Fig. 3. (Top to bottom) Plots showing clean speech signal, noisy speech signal corrupted by car noise at 10-dB SNR, gain used for noise tracking, estimated
noise envelope, clean signal envelope, noisy signal envelope, and enhanced signal envelope of frequency band 3.

estimator [31] as indicated314

GX

(

ξ̂m (k), γ̂m (k)
)

=
ξ̂m (k)

ξ̂m (k) + 1
exp

{∫ ∞

vx

e−t

t
dt

}

vx =
ξ̂m (k) · γ̂m (k)

ξ̂m (k) + 1
. (16)

A gain table is derived during training for each noise class315

for a priori SNR values ranging from −20 to 40 dB and for a316

posteriori SNR values ranging from −30 to 40 dB in 1 dB steps,317

as proposed in [9] and [10]. The training procedure and all the318

parameters used match the ones reported in [9] and [10]. In other319

words, the GD lookup table that is used for tuning becomes of320

size 61×71 for each noise class. To illustrate the working of321

the noise-tracking algorithm, Fig. 3 shows the clean speech, the322

noisy speech corrupted by car noise, the selected gain function323

GD for frequency band 3, and the enhanced speech.324

IV. REAL-TIME IMPLEMENTATION325

The system was implemented on a PC and a PDA platform.326

The PDA platform had limited computational and memory re-327

sources as compared to the PC platform and has been previously328

used as a research platform for cochlear implants [11]. The PDA329

platform has been recently approved by FDA for clinical trials.330

The input speech, sampled at 22 050 Hz, using the PDA platform331

is windowed into 11.6-ms windows (128-sample windows). The332

analysis rate can be set more than that of the required stimulation333

rate by adjusting the overlap between windows; thus, the over- 334

lap between windows for computing the recursive WPT can be 335

decided depending on the required stimulation rate. The detail 336

and analysis coefficients from the first stage of WPT are used 337

to compute the subband power difference measure for the VAD. 338

The MFCC features are computed for every alternate noise-only 339

window using the WPT coefficients at the sixth stage, which are 340

already computed during the signal decomposition. This was 341

done to ensure real-time implementation on the PDA platform. 342

The MFCC feature vector, after normalization, was used as the 343

input feature vector to the trained GMM classifier. 344

The decision made by the GMM classifier for 20 consecu- 345

tive noise frames is used to generate a class decision. Median 346

filtering of the decisions made by the classifier is considered 347

due to the nonperfect behavior of the noise detector as some 348

of the voiced sections might be labeled as noise. The number 349

of windows for median filtering was chosen to be 20 because 350

any further increase in the number of windows did not show 351

much improvement in the classification performance. Reacting 352

to transient noise by frequently switching from one noise class 353

to another produces unpleasant distortions. Hence, a median fil- 354

ter with a duration of 2 s was used to eliminate such frequent 355

switching. As a result, a switch is only made when the noise 356

environment is sustained for more than 2 s. Clearly, this dura- 357

tion depends on user comfort and can be easily changed in the 358

system for any lesser or longer duration. 359

The system implementation was done in C and an interactive 360

GUI was added using LabVIEW. The PC platform used for 361
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TABLE I
CLASSIFICATION RATES OF THE NOISE ADAPTIVE CI SYSTEM AVERAGED OVER

10 NOISE CLASSES AT DIFFERENT SNRS

implementation had a processor clock rate of 3.33 GHz with362

4-GB RAM, and the PDA platform had a processor clock rate363

of 624 MHz with 512-MB RAM.364

Due to the limited computing and memory resources of the365

PDA platform, several code optimizations had to be done in366

order to achieve a real-time throughput. The rate at which the367

classifier was activated was reduced to every other noise frame368

instead of every noise frame. Since the PDA processor was a369

fixed-point processor, the implementation was done using fixed-370

point integer arithmetic. Parts of the code, where the accuracy371

was crucial and a large dynamic range was required, were im-372

plemented using 32-bit word length, while the other parts were373

implemented using 16-bit word length to save processing time.374

In addition, the exponential integral [used in ([16])] was imple-375

mented as a lookup table, and the lookup table was designed376

in such a way that the size of the table was minimized at the377

expense of negligible loss in accuracy. Different sections of the378

table were created with different resolutions to save memory379

and were arranged in a tree structure to speed up the lookup380

table search.381

V. PERFORMANCE EVALUATION AND DISCUSSION382

In this section, we provide the real-time timing as well as the383

performance results of the noise adaptive CI system described384

in the previous sections. The performance of both the classi-385

fier and the noise suppression blocks are reported. To assess386

classification accuracy, 100 audio signals were formed using387

sentences provided in [21] with each sentence of approximately388

3-s duration. All the speech sentences were concatenated to389

form speech segments of 30-s duration with a 1-s pause be-390

tween them. A pause was deliberately added between sentences391

so that the noise classification decision was made based on the392

noise present during speech pauses. These concatenated sen-393

tences were used to serve as the speech material. Ten noise394

classes with 5-min recording for each class were considered395

as the noise database. Both noise and speech were sampled at396

8 kHz. 50% of the data were randomly selected and used for397

training and the remaining 50% for testing. The noise added to398

the speech sentences was randomly changed every 3 s. A delib-399

erate frequent change in the background noise was only done to400

determine the performance of the classifier. Table I shows the401

correct classification rates averaged across all the classes at var-402

ious SNRs. Table II shows the classification confusion matrix at403

SNR = 0 dB for ten classes of noise.404

To study the performance of the adaptive-noise suppression405

approach, we compared it against two other scenarios: one with-406

out any noise suppression and the other with a fixed (non-407

environment specific) noise-suppression algorithm. A total of408

30-s long concatenated speech sentences were added to each 409

noise at a particular SNR. For the fixed-noise suppression, the 410

minimum search algorithm was used to track the noise variance 411

in place of using the lookup table that was generated via the 412

data-driven approach. The speech quality measures of percep- 413

tual evaluation of speech quality (PESQ) and log-likelihood ratio 414

(LLR) were considered to examine the quality of the noise sup- 415

pressed output signals. In addition, the three composite measures 416

of signal distortion (Csig ), background intrusiveness (Cbak ), and 417

overall quality (Covl), which have been shown to correlate highly 418

with subjective speech quality [32] were computed. These com- 419

posite measures [32] have been shown to be reasonably close to 420

the subjective quality ratings made by normal hearing listeners. 421

These measures were computed using the clean speech signal 422

and the enhanced reconstructed signal. The comparative results 423

are shown in Fig. 4. This figure shows the data for the 5-dB SNR 424

condition with the standard deviation displayed as an error bar. 425

A one-way analysis of variance (ANOVA) was conducted which 426

showed a statistically significant (F(2,117) > 9.8, p < 0.001) 427

of processing on the measures examined. Post-hoc tests were 428

run, according to Tukey’s HSD test (with Bonferroni correc- 429

tion), to assess differences between the values of the measures 430

obtained in the various conditions. The notation “∗”on the adap- 431

tive noise suppression bars represent the confidence with which 432

the null hypothesis was rejected when comparing the means of 433

the adaptive and the fixed-noise suppression. Similar improve- 434

ments were observed for other SNR conditions. As can be seen 435

from this figure, the adaptive-noise suppression approach pro- 436

vided significantly better performance according to the afore- 437

mentioned measures as compared to the no-noise suppression 438

and fixed-noise suppression systems. For the playground envi- 439

ronment, for instance, the PESQ improved from 2.3 with the 440

fixed-noise suppression system to 2.6 with the adaptive system. 441

It should be noted that all these objective measures were com- 442

puted using the acoustic waveforms generated by the adaptive 443

noise-suppression approach discussed in Section III-D. For visu- 444

alization purposes, Fig. 5 shows an electrodogram, derived using 445

the 8-of-22 stimulation strategy for the speech segment “asa” 446

spoken by a female talker. More specifically, this figure shows 447

the electrodogram of a clean speech, a noisy speech with street 448

noise added at 5-dB SNR, and enhanced electrodogram with the 449

adaptive and fixed-noise suppression algorithms. The enhanced 450

electrodogram was obtained by passing the noisy speech sig- 451

nal through the CI system illustrated in Fig. 1. The noisy and 452

clean speech electrodograms were obtained using the CI system 453

without noise suppression. As can be seen from this figure, the 454

adaptive system is more effective in suppressing noise than the 455

fixed-suppression system. This is evident, for instance, in elec- 456

trodes 8–12 at segments t = 0.2–0.4 s and t = 0.55–0.8 s. It is 457

worth mentioning that although following a misclassification a 458

different gain function than the one corresponding to the correct 459

noise class might be selected, we found that this did not degrade 460

performance. That is, the enhanced speech was found to still 461

have higher quality (as assessed by the aforementioned objec- 462

tive measures) than that of noisy speech obtained without noise 463

suppression. It should be noted that based on the earlier eval- 464

uation of the proposed adaptive noise-suppression system, we 465
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TABLE II
CLASSIFICATION CONFUSION MATRIX OF THE NOISE ADAPTIVE CI SYSTEM AT SNR = 0 dB

Fig. 4. Bar charts showing the performance of the adaptive noise suppression, fixed-noise suppression and no-noise suppression algorithms in terms of the
objective measures PESQ, LLR, Csig , Cbak , and Covl . Error bars represent the standard deviation. The asterisk over the adaptive noise suppression bar indicates
the confidence with which the means of adaptive and fixed-noise suppression are significantly different with “∗”, “∗∗”and “∗∗∗” indicating ‘p < 0.05,”p <
0.01,’ and ‘p < 0.001,’ respectively.
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Fig. 5. Electrodograms of the utterance ‘asa’: (a) clean signal, (b) noisy signal with street noise at 5-dB SNR, (c) after adaptive noise suppression, and (d) after
fixed-noise suppression.

TABLE III
REAL-TIME TIMING PROFILE OF THE CI SYSTEM COMPONENTS FOR 128-SAMPLE FRAMES (=11.6 MS AT 22 KHZ SAMPLING FREQUENCY)

cannot infer that there will be any concomitant improvements466

in speech intelligibility. Further clinical testing of the proposed467

system is needed to answer this question. \Q1

Q2

468

Table III shows the real-time profiling of the complete sys-469

tem components on both the PC and PDA platforms. The Table470

lists the times required for the specified components in the sys-471

tem to process 11.6-ms frames (128 samples). As expected, the472

PDA platform took a much longer processing time than the PC473

platform to process 11.6-ms frames due to its limited process-474

ing power. However, it still achieved a real-time throughput by475

processing 11.6-ms frames in about 8.5 ms.476

VI. CONCLUSION 477

A real-time noise classification and tuning system along with 478

the n-of-m speech processing strategy using the WPT has been 479

implemented for cochlear implant applications. The system is 480

capable of automatically detecting noise environment changes 481

and selecting the optimized parameters of a noise suppression 482

algorithm in response to such changes. The feature vector and 483

the classifier deployed in the system to automatically identify 484

the background noise environment are carefully selected so 485

that the computation burden is kept low to achieve a real-time 486

throughput. The results reported indicate improvement in speech 487
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enhancement when using this adaptive real-time cochlear im-488

plant system. In our future work, we plan to carry out a clinical489

testing of the enhanced cochlear implant system introduced in490

this paper.491
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