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Abstract

Most noise reduction algorithms rely on obtaining reliable estimates of the SNR of each frequency bin. For that reason, much work
has been done in analyzing the behavior and performance of SNR estimation algorithms in the context of improving speech quality and
reducing speech distortions (e.g., musical noise). Comparatively little work has been reported, however, regarding the analysis and inves-
tigation of the effect of errors in SNR estimation on speech intelligibility. It is not known, for instance, whether it is the errors in SNR
overestimation, errors in SNR underestimation, or both that are harmful to speech intelligibility. Errors in SNR estimation produce con-
comitant errors in the computation of the gain (suppression) function, and the impact of gain estimation errors on speech intelligibility is
unclear. The present study assesses the effect of SNR estimation errors on gain function estimation via sensitivity analysis. Intelligibility
listening studies were conducted to validate the sensitivity analysis. Results indicated that speech intelligibility is severely compromised
when SNR and gain over-estimation errors are introduced in spectral components with negative SNR. A theoretical upper bound on the
gain function is derived that can be used to constrain the values of the gain function so as to ensure that SNR overestimation errors are
minimized. Speech enhancement algorithms that can limit the values of the gain function to fall within this upper bound can improve
speech intelligibility.
� 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Many speech-enhancement algorithms operate in the fre-
quency domain and are based on multiplication of the noisy
speech magnitude spectrum by a gain (or suppression) func-
tion, which is designed/optimized based on certain error cri-
teria (e.g., mean squared error). Such algorithms include the
MMSE (Ephraim and Malah, 1984), logMMSE (Ephraim
and Malah, 1985) and Wiener filtering (Scalart and Filho,
1996), among others (see review in (Loizou, 2007, Ch. 7)).
All these algorithms rely on accurate estimates of the

signal-to-noise ratio (SNR) in each frequency bin, as the
gain functions are defined in terms of the spectral SNR. A
well-known approach in estimating the SNR is the “deci-
sion-directed” approach proposed in (Ephraim and
Malah, 1984). This SNR estimator is simply computed
using the weighted average of the past SNR estimate and
the present SNR estimate.

The “decision-directed” approach is computationally
simple and has been found to perform quite well in noise
reduction applications (Hu and Loizou, 2007). A number
of studies have analyzed the “decision-directed” approach
in terms of its ability to reduce musical noise (Cappe,
1994) and in terms of its smoothing behavior in low SNR
conditions (Breithaupt and Martin, 2011). Others have
analyzed its bias and proposed methods to compensate
for it (Martin, 2005; Erkelens et al., 2007; Plapous et al.,
2006). This bias is inherent in the “decision-directed”
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approach, and it is introduced partly due to the clipping
function (max) used for ensuring positive SNR values
(Martin, 2005), and the fact that the square of the estima-
tor of the magnitude spectrum is used rather than the esti-
mator of the magnitude-squared spectrum (Erkelens et al.,
2007). Extensions to the “decision-directed” approach have
been proposed in (Cohen, 2005) using non-causal SNR esti-
mators that made use of future noisy observations.

In summary, much work (Hu and Loizou, 2007; Cappe,
1994; Breithaupt and Martin, 2011; Martin, 2005; Erkelens
et al., 2007; Plapous et al., 2006) has been done in analyz-
ing the behavior of the “decision-directed” approach in the
context of reducing musical noise as well as reducing dis-
tortions in transient conditions. The overall goal of such
analysis was to improve the subjective quality of enhanced
speech. Little work has been done, however, in analyzing,
more generally, SNR estimation in the context of speech
intelligibility. That is, the impact of errors in estimating
the SNR on speech intelligibility is largely unknown. It is
unclear, for instance, whether it is the SNR over-estimation
errors or the SNR under-estimation errors, or both, that
are harmful to speech intelligibility. Errors in estimating
the SNR affect directly the estimation of the gain function,
and the impact of inaccuracies in estimating the gain func-
tion on speech intelligibility is also unknown. In brief, the
sensitivity analysis of errors in SNR and gain estimation is
lacking from the literature, particularly as it pertains to
speech intelligibility. Such a sensitivity analysis needs to
be accompanied with listening studies for appropriate val-
idation of the analysis. The focus of the present study is to
accomplish just that: provide sensitivity analysis of SNR
errors and examine (and confirm) the impact of such errors
using intelligibility listening studies. The outcomes from
the present study are important as they can provide useful
insights as to how to develop better SNR estimators that
can be used in statistical-model based algorithms to
improve speech intelligibility.

2. Sensitivity analysis

The majority of speech-enhancement algorithms operate
in the frequency domain and are based on multiplication of
the noisy speech magnitude spectrum by a gain function G.
In most algorithms, the gain G is a function of the a priori

SNR (e.g., Scalart and Filho, 1996), the a posteriori SNR
(e.g., Berouti et al., 1979) or both (e.g., Ephraim and
Malah, 1984, 1985). Without loss of generality, we present
next the sensitivity analysis for the Wiener gain function.
Let GW ðnÞ denote the Wiener gain function:

GW ðnÞ ¼
n

nþ 1
; ð1Þ

where n , E½X 2�=E½D2� denotes the a priori SNR, and X

and D are the magnitude spectra of the clean speech and
noise signals respectively. Let n�

n� ¼ nþ Dn ð2Þ

denote the perturbed value of n. From the above two equa-
tions, it is easy to derive the change in the value of the gain
function produced when perturbing the value of n. Such a
perturbation would reflect among other things the inaccu-
racy in estimating n from the noisy observations. We define
this change in the gain function as:

DGðnÞ ¼ Gðn�Þ � GðnÞ: ð3Þ

For the Wiener gain function (Eq. (1)), this is given by:

DGðnÞ ¼ n� � n
ðn� þ 1Þðnþ 1Þ : ð4Þ

To better understand the impact of errors in the estima-
tion of n on the gain function, we show in Fig. 1 the plot of
the delta gain function DGðnÞ for different values of Dn
ranging from Dn ¼ 0:5 to Dn ¼ 60. The DGðnÞ function is
shown for both the Wiener gain function (left panel) and
the log-MMSE gain function (right panel) in Fig. 1. It is
clear from Fig. 1 that small values of perturbation ðDnÞ
produce relatively large changes in the gain function (at
least relative to the full dynamic range of the gain function,
which is 1), in the negative SNR region (i.e., for
ndB < 0 dB). When Dn ¼ 1:5, for instance, and assuming
that ndB < 0 dB, the gain function is overestimated by 0.6
(note that the true value of the Wiener gain function for
ndB < 0 dB is close to zero), which is quite substantial given
that the gain function (at least, in most cases) is bounded
by 1. It is clear from Eq. (4) that when n is large ðn� 1Þ
and Dn is relatively small, we have n � n� and therefore
DGðnÞ � 0. Indeed, when ndB > 0 dB, DGðnÞ � 0, and this
is confirmed in Fig. 1. Hence, for the region where
ndB > 0 dB, the gain function does not seem to be influ-
enced by errors in the estimation of n. This is unfortunate
since most noise reduction algorithms estimate the value of
n more accurately in the positive rather than the negative
SNR region (better estimates of the speech spectrum are
obtained at high SNR levels). It is noted that, although
the above analysis is done in the linear domain, the changes
in a priori SNR analyzed span across a 60-dB range.

An equivalent way of deriving the sensitivity of the gain
function to perturbations of the n values is by differentiat-
ing the gain function with respect to n (Whitehead and
Anderson, 2011). In doing so, we can derive plots similar
to those shown in Fig. 1 for the Wiener gain function. Sen-
sitivity is highest at lower values of n reaching a maximum
of 1 at n ¼ 0 and sensitivity is lowest (approaching zero) at
higher values of n (Whitehead and Anderson, 2011). This is
consistent with the shape of the curves shown in Fig. 1.

Empirical evidence supporting the fact that n is overes-
timated in the negative SNR region is provided in Fig. 2,
which plots the values of n estimated using the “decision-
directed” approach (Ephraim and Malah, 1984), and
denoted as n̂, against the true short-time1 values of n which

1 As we can not compute the true a priori SNR values n, short-time
(instantaneous) values are used for illustration purposes. To distinguish
between the two, we use the symbol �n in Eq. (5).
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are estimated according to: �n ¼ X 2=D2. The solid line rep-
resents (Plapous et al., 2006):

n̂AVE ¼ E½n̂j�n� ¼
Z 1

�1
n̂ � pðn̂j�nÞ � dn̂; ð5Þ

while the diagonal line represents the perfect estimator. The
pattern shown in Fig. 2 was also demonstrated by others
(see Plapous et al., 2006). It is clear that n is over-estimated
for SNR < 0 dB and under-estimated for SNR > 0 dB. The
n value is over-estimated by as much as 40–60 dB at extre-
mely low (<�40 dB) SNR levels (see Fig. 2). The SNR

over-estimation affects in turn the gain function of most
statistically-based estimators (e.g., MMSE, logMMSE).
Fig. 3 shows a plot of the mean of the estimated Wiener
gain function against the true n. The bias, or shift in the
Wiener gain function, relative to the true value (near 0) is
clear and for this example it was substantial at low SNR
levels (e.g., 0.4 at n ¼ �20 dB SNR in Fig. 3).

To summarize, n is often over-estimated in the negative
SNR region (see Fig. 2). As demonstrated in Fig. 1, the
estimation of the gain function is particularly sensitive to
perturbations of n in the negative SNR region. Inaccuracies
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Fig. 2. Scatter plot of the true instantaneous SNR values ðnÞ against the corresponding estimated SNR values. The estimated SNR values were computed
using the “decision-directed” approach and the Wiener gain function implemented as per (Scalart and Filho, 1996). The diagonal line indicates the perfect
estimator (i.e., zero estimation error). The input global SNR was �5 dB and the background noise was babble.
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Fig. 1. Plots of the difference ðDGÞ in the gain function, computed as Gðn�Þ � GðnÞ, for different values of the perturbed SNR ðn�Þ. Panel (a) shows DG for
the Wiener gain function and panel (b) for the log-MMSE gain function. c in panel (b) denotes the a posteriori SNR.
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in the estimation of n cause an over-estimation of the gain
function (see Fig. 3). But, how does that affect speech intel-
ligibility? This is examined next.

3. Impact of SNR and gain overestimation on speech

intelligibility

3.1. Conditions

To assess the impact of SNR and gain over-estimation
we conducted listening studies wherein we assumed a priori

knowledge of n (more precisely, we assumed a priori knowl-
edge of the short-term versions of n). This was found nec-
essary in order to properly control (fix) the changes in the
gain function. In one set of experiments, we artificially
introduced a bias in the gain function. Such a bias can be
introduced by including a bias in the n estimation. The gain
bias was introduced only in the negative SNR regions to
better reflect realistic conditions (see Fig. 2). No bias in
the gain function was introduced in the positive SNR
region. This set of experiments simulated to some extent
gain over-estimation as caused by n over-estimation. In a
second set of experiments, we artificially introduced a bias
in the gain function in the positive SNR region (no bias
was introduced in the negative SNR region). More pre-
cisely, in the latter set of experiments, the gain function
was purposefully attenuated.

The gain functions used in the above two experiments
are shown in Fig. 4. The baseline gain function was the
Wiener gain function (Eq. (1)). To create a bias in the

negative SNR region, we modified the Wiener gain func-
tion as follows:

GW 1 ¼
1

C þ 1

n
nþ 1

þ C
� �

; ð6Þ

where

C ¼ B
1� B

; ð7Þ

and B is the amount of bias introduced in the negative
SNR region. For our experiments, we considered the
following values for B: 0.2, 0.4, 0.5, 0.6, and 0.7. Note that
when B = 0 (i.e., no bias), we obtain the baseline Wiener
gain function (Eq. (1)).

In the second set of experiments, we purposefully atten-
uated the gain function in the positive SNR region. We
modified the Wiener gain function as follows:

GW 2 ¼ B � n
nþ 1

; ð8Þ

where B is the bias term. The following values of B were
considered: 0.001, 0.05, 0.1, 0.2, and 0.4. Note that in the
extreme case that B = 0.001, the gain function is effectively
attenuated by 60 dB. The plots of the modified gain func-
tions GW 1 and GW 2 are shown in Fig. 4 for different values
of B.

3.2. Intelligibility listening tests

Eight (5 male and 3 female, mean age = 19 yrs) normal-
hearing listeners participated in the listening experiments,
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Fig. 3. Plot of the average value of the estimated gain function ðĜW Þ against the true instantaneous SNR ðnÞ values. The Wiener gain function was used
and estimated as per (Scalart and Filho, 1996). The error bars indicate standard deviations. The input global SNR was �5 dB and the background noise
was babble.
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and all listeners were paid for their participation. Sentences
taken from the IEEE database (IEEE Subcommittee, 1969)
were used for test material. The sentences in the IEEE
database are phonetically balanced with relatively low
word-context predictability. The sentences were recorded
at a sampling rate of 25 kHz, and the recordings are avail-
able from a CD accompanying the book in (Loizou, 2007).
Noisy speech was generated by adding babble noise at
�10 dB and �5 dB SNR. The babble noise was produced
by 20 talkers with equal number of female and male talk-
ers. The SNR levels chosen are understandably extremely
low, but they were chosen to avoid ceiling effects (e.g., per-
formance near 100% correct), which would in term prevent
us from drawing any meaningful conclusions.

Each listener participated in a total of 24 conditions (=2
SNR levels � 12 processing conditions). For each SNR
level, the processing conditions included speech processed
using modified Wiener filters based on: (1) 5 biased gain
functions (i.e., biased by fixed bias B = 0.2, 0.4, 0.5, 0.6,
and 0.7), and (2) 5 attenuated gain functions (i.e., attenu-
ated by B = 0.001, 0.05, 0.1, 0.2, and 0.4). For comparative
purposes, subjects were also presented with noise-
corrupted (unprocessed) stimuli and stimuli processed by
the Wiener filter implemented as per (Scalart and
Filho, 1996). The noise estimation algorithm proposed in
(Rangachari and Loizou, 2006) was used.

The listening experiment was performed in a sound-
proof room (Acoustic Systems, Inc.) using a PC connected
to a Tucker-Davis system 3. Stimuli were played to the lis-
teners monaurally through Sennheiser HD 250 Linear II
circumaural headphones at a comfortable listening level.
Before the test, each subject listened to a set of noise-
corrupted sentences to be familiarized with the testing
procedure. During the test, subjects were asked to write
down the words they heard. Two lists of sentences (i.e.,
20 sentences) were selected from the IEEE database (IEEE

Subcommittee, 1969) and used for each condition, with
none of the lists repeated across conditions. The intelligibil-
ity score for each condition was computed as the ratio
between numbers of the correctly recognized words and
the total number of words contained in 20 sentences. The
order of the conditions was randomized across subjects.
The testing session lasted for about 2.5 h. Subjects were
given a 5-min break every 30 min during the test.

3.3. Results

The results from the intelligibility listening tests,
expressed in terms of percentage of words identified cor-
rectly, are shown in Fig. 5. Panels (a) and (c) show the
results from the first set of experiments, wherein the bias
was introduced only in the negative SNR region. As can
be seen, the gain bias had a significant effect on speech intel-
ligibility, particularly in the extremely low SNR conditions
(input SNR = �10 dB). Intelligibility dropped to 50% when
B = 0.4, and to 10% when B = 0.7. Overall, a larger degra-
dation in intelligibility was observed when B increased and
approached the value of 1. A similar trend was also
observed in the �5 dB SNR condition. High intelligibility
scores were obtained in the �5 dB SNR condition com-
pared to the scores obtained with unprocessed speech and
Wiener-processed speech implemented as per (Scalart and
Filho, 1996) (labeled as “Wien” in Fig. 5). This was to be
expected given that in these experiments a priori knowledge
of n was assumed when a gain bias was introduced. It
should be noted that for the Wiener-processed speech
(Scalart and Filho, 1996), the SNR values were estimated
using the “decision-directed” approach.

Panels (b) and (d) show the results from the second set
of experiments, wherein the bias was introduced only in
the positive SNR region. Unlike the results from the first
experiment, the gain bias had a minimal effect on speech
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Fig. 4. Wiener gain functions modified to introduce a bias either in the negative SNR region as per Eq. (6) (panel (a)) or in the positive SNR region as per
Eq. (8) (panel (b)). The numbers indicate the bias B introduced in the gain function.
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intelligibility. Performance remained high (>80%) even in
the extreme case where the gain function was consistently
attenuated by as much as 60 dB (corresponding to
B = 0.001). Note that in this circumstance, the gain func-
tion (plotted in linear units) was practically flat (see for
instance the gain function for B = 0.05 in Fig. 4) across
all SNR values (positive and negative). The fact that intel-
ligibility was not affected when the gain function was
underestimated in the positive SNR regions can be illus-
trated by examining the change in SNRESI values (see Eq.
(10), Section 4) of individual frequency bins after the bias
was introduced. The SNRESI metric is used here as it has
been found previously (Ma et al., 2009) to correlate mod-
estly high with intelligibility. Analysis of the SNRESI metric
(Loizou and Kim, 2011) has shown that speech synthesized
with spectral components of SNRESI > 0 dB are more intel-
ligible compared to speech synthesized with spectral com-
ponents of SNRESI < 0 dB (in fact, it can be proved in
(Kim and Loizou, 2011) that spectral components with
SNRESI < 0 dB are always noise masked, i.e., SNR < 0 dB).
Table 1 shows the average percentage of frequency bins
with positive and negative SNRESI values computed before
and after the bias was introduced (average percentages
were based on 10 IEEE sentences). As can be seen from this

table, the percentage of frequency bins with positive and
negative SNRESI values remains relatively un-changed
(e.g., 50.7% before bias vs. 54.0% after bias at �10 dB
SNR) when the gain is underestimated in the positive
SNR regions. Consequently, no change in intelligibility is
expected. In contrast, the percentage of frequency bins with
negative SNRESI values increases significantly (e.g., 49.3%
before bias vs. 83.5% after bias at �10 dB SNR) after the
bias is introduced in the negative SNR regions. More
speech frequency bins are subsequently masked by noise
(since SNRESI < 0 dB implies SNR < 0 dB (Kim and
Loizou, 2011) leading to a drop in intelligibility.

From the outcomes of the two experiments we can draw
the following conclusions. In terms of preserving or
improving speech intelligibility it is imperative that the gain
function takes values close to 0 for SNR < 0 dB. This is
necessary in order to remove masker-dominated T–F units,
which are largely responsible for the loss in intelligibility.
The value of the gain function in the SNR > 0 dB region
had a minimal effect on intelligibility (see Fig. 5). In fact,
the simplest gain function that can be considered is a bin-
ary gain function that assumes a value of 0 for SNR < 0 dB
and assumes a value of 1 for SNR > 0 dB. Such binary gain
functions are used in the ideal binary mask technique
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Fig. 5. Mean intelligibility scores obtained by normal-hearing listeners in the various conditions as a function of the bias B introduced in the Wiener gain
function (see Fig. 4). Bars marked as ‘UN’ indicate intelligibility scores obtained in the un-processed noisy conditions, and bars marked as ‘Wien’ indicate
the scores obtained with Wiener-processed speech based on the algorithm presented in (Scalart and Filho, 1996). Error bars indicate standard deviations.
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employed in computational auditory scene analysis
(CASA) (Wang and Brown, 2006). The optimality of these
binary gain functions has been shown in (Li and Wang,
2009; Loizou and Kim, 2011). In Loizou and Kim (2011),
it was proven that these binary gain functions maximize
the weighted average of the band SNRs, a metric closely
related to the articulation index (AI). Consequently maxi-
mizing the articulation index ought to improve speech
intelligibility, since the AI measure is highly correlated with
speech reception (Kryter, 1962). Indeed, the use of such
binary gain functions has been shown to yield substantial
improvements in intelligibility, and this has been demon-
strated in a number of studies involving normal-hearing
listeners (Brungart et al., 2006; Li and Loizou, 2009). In
brief, in the context of developing noise reduction algo-
rithms, much focus needs to be placed on estimating accu-
rately the gain function in the SNR < 0 dB region. Such
algorithms are likely to improve speech intelligibility.

4. Impact of SNR overestimation on speech distortions

It was not clear from the above discussion as to whether
the SNR (and gain) overestimation introduced spectral
amplification distortion, spectral attenuation distortions
or both. It is important to distinguish between the two
since these distortions do not contribute equally to speech
intelligibility loss (Loizou and Kim, 2011). More specifi-
cally, it was demonstrated in (Loizou and Kim, 2011) that
the spectral amplification distortions are particularly
harmful to speech intelligibility. In contrast, the spectral
attenuation distortions do not impair speech intelligibility.
To answer the above question, we use the signal-to-residual
spectrum ratio (SNRESI) metric – also known in the litera-
ture as the frequency-weighted segmental SNR (Quacken-
bush et al., 1988) – as a tool. This metric has been found
to correlate highly with both speech quality (Hu and
Loizou, 2008) and speech intelligibility (Ma et al., 2009).
The SNRESI metric can also be used to decouple the spec-
tral amplification distortions from the spectral attenuation
distortions.

The SNRESI measure can be expressed in terms of the
Wiener gain function as follows (Lu and Loizou, 2010):

SNRESIðn;GÞ ¼
n

ð1� GÞ2nþ G2
: ð9Þ

Severe amplification distortions, in excess of 6 dB, are
introduced when SNRESI < 1. More precisely, if the SNRESI

is defined using short-time values of the clean and
processed magnitude spectra, rather than statistical

averaged spectral values (i.e., based on expected values),
it is easy to show that when SNRESI < 1 we have
X̂ > 2 � X , where SNRESI is the short-time version of
Eq. (9) and is defined as (Loizou and Kim, 2011):

SNRESI ¼
X 2

ðX � X̂ Þ2
ð10Þ

where X denotes the clean magnitude spectrum and X̂ the
processed (via a noise reduction algorithm) magnitude
spectrum obtained at given frame (the main difference
between Eqs. (9) and (10) is that the first is defined using
expected values while the latter is defined using short-time
values of the magnitude spectra). It was demonstrated in
(Loizou and Kim, 2011) via listening tests, that when
SNRESI < 1, speech intelligibility was severely compromised
(i.e., intelligibility scores dropped to zero). This is so be-
cause T–F units that satisfy this condition ðSNRESI < 1Þ
are noise masked, i.e., always have a negative SNR (see
analytical proof in (Kim and Loizou, 2011)). Based on this
observation, we can conclude that if the gain function falls
into the SNRESI < 1 region, it will severely compromise
speech intelligibility. We formally define such a “forbid-
den” region as follows:

F ¼ fG : SNRESI < 1g \ f0 	 G 6 1g: ð11Þ

The set shown on the right is included to ensure that the
gain function is bounded. Identifying such a region is
important, as the boundary of this region can serve as an
upper bound for the highest value allowed for G. Using
Eq. (9), and solving for G satisfying the inequality
SNRESI < 1 we get:

GF > 2
n

nþ 1
: ð12Þ

The set of gain functions that satisfy the above equation
belong to the region F (Eq. (11)). Fig. 6 plots the region F

and superimposes the Wiener gain function for compari-
son. The shaded portion shown in Fig. 6 depicts the region
F. If the estimated gain function falls into this region, intel-
ligibility will suffer. Unfortunately, as shown in Fig. 3, the
estimated gain functions reside for the most part in this
region due to SNR over-estimation. This explains the
inability of current noise-reduction algorithms to improve
speech intelligibility at extremely low SNR levels (see
Fig. 5). Based on the above, we can define the following
bounds on the estimated Ĝ:

0 6 Ĝ 6 2
n

nþ 1
: ð13Þ

Table 1
Average percentage of frequency bins with positive and negative SNRESI values (Eq. (10)) computed before and after the bias (B = 0.7) was introduced.

SNRESI of freq.
bins

�10 dB SNR �5 dB SNR

No bias (B = 0)
(%)

B = 0.7 in Eq. (7)
(%)

B = 0.7 in Eq. (8)
(%)

No bias (B = 0)
(%)

B = 0.7 in Eq. (7)
(%)

B = 0.7 in Eq. (8)
(%)

SNRESI P 0 dB 50.7 16.5 54.0 55.2 24.0 58.7
SNRESI < 0 dB 49.3 83.5 46.0 44.8 76.0 41.3
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The upper bound is equivalent to the constraint that
X̂ < 2 � X . This constraint allows only attenuation distor-
tions and limited (<6 dB) amplification distortions (Loizou
and Kim, 2011). If the estimated gain function Ĝ satisfies
the above inequality, then it is guaranteed that speech intel-
ligibility will improve over that obtained by un-processed
noisy speech. This was demonstrated in (Loizou and
Kim, 2011; Kim and Loizou, 2011).

5. Factors contributing to SNR overestimation

So far we analyzed and discussed the detrimental effects
of SNR over-estimation on speech intelligibility. But, what
contributes to SNR over-estimation? This is an important
question since identifying the reasons underlying SNR
over-estimation can potentially lead us to the development
of noise-reduction algorithms capable of improving speech
intelligibility. There are at least two factors contributing to
SNR over-estimation.

The first factor is attributed to the use of the “decision-
directed” approach, which is often used to estimate the
SNR in most statistical-model based algorithms. The “deci-
sion-directed” approach inherently yields biased estimates
of the SNR. This was discussed in (Martin, 2005; Erkelens
et al., 2007) and proven in (Loizou, 2007, Section 7.4.1).
This bias is introduced partly due to the use of the clipping
function (max) for ensuring positive SNR values, and the
fact that the square of the estimator of the magnitude spec-
trum is used rather than the estimator of the magnitude-
squared spectrum (Martin, 2005; Erkelens et al., 2007).
As shown in (Erkelens et al., 2007), a p=4 bias exists even
if we had access to the true signal variance. This bias,
however, is not expected to be detrimental as it

under-estimates the true SNR. In contrast, the bias intro-
duced by the clipping function (max operator) may lead
to over-estimation of the true SNR.

The second factor is attributed to the noise spectral
variance estimation. The SNR estimate requires computa-
tion of the noise statistics, which are sometimes gathered
during speech pauses or estimated/updated continuously
using noise-estimation algorithms. Most noise-estimation
algorithms, however, under-estimate the value of the noise
spectral variance. The minimum statistics (Martin, 2001)
algorithms, for instance, are designed to estimate the mean
of the minimum of a set of random variables (representing
past values of the noisy power spectral density). The mini-
mum value of a set of random variables, however, is always
smaller than their mean (Papoulis and Pillai, 2002). In such
algorithms, the bias needs to be computed and corrected
and a number of methods have been proposed to do so
(Martin, 2001, 2006). Since the bias term requires knowl-
edge of the noise variance (Martin, 2001), errors are intro-
duced in the bias computation. Most noise tracking
algorithms are unable to follow fast increases in noise level,
and in those instances the noise spectral variance is under-
estimated. When the noise spectral variance is under-esti-
mated, the SNR is over-estimated since the noise term is
in the denominator of the SNR calculation. Hence, SNR
over-estimation is caused primarily by under-estimation
of the noise spectral variance. Empirical evidence in
support of this conclusion is shown in Fig. 7. This figure
shows separately the scatter plots of estimated vs. true
SNR values for frequency bins in which the noise spectral
variance was either overestimated or underestimated (the
noise-estimation algorithm in (Rangachari and Loizou,
2006) was used and the true noise variance was computed
by applying a first-order recursion to the instantaneous
magnitude-squared spectrum of the noise). Note that when
the noise spectral variance was over-estimated, much of the
SNR over-estimation errors were eliminated. In contrast,
when the noise spectral variance was under-estimated, the
SNR over-estimation errors were dominant. The top two
panels in Fig. 7 show the histograms of SNRs of frequency
bins for which the noise spectral variance was either over-
estimated or under-estimated. Frequency bins correspond-
ing to noise-overestimated bins had on the average a higher
SNR, suggesting that speech intelligibility ought to be high
when retaining those frequency bins. Indeed, listening
experiments reported in (Kim and Loizou, 2011) confirmed
that high intelligibility scores could be obtained when only
retaining frequency bins that over-estimate the noise spec-
tral variance. In contrast, when frequency bins were
retained for which the noise spectral variance was under-
estimated, intelligibility scores dropped to zero.

6. Conclusions

The present study analyzed the impact of errors in
SNR and gain-function estimation on speech intelligibil-
ity. Listening tests indicated that SNR and gain-function
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Fig. 6. Shaded portion of the graph indicates the “un-desirable” region of
the gain function plotted as a function of the true instantaneous SNR ðnÞ.
When the estimated gain function falls in this region, large amplification
distortions (>6 dB) are introduced in the spectrum. These distortions are
largely responsible for the lack of intelligibility improvement with existing
speech enhancement algorithms (Loizou and Kim, 2011). The Wiener gain
function is superimposed for comparative purposes.
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overestimation errors in frequency bins with negative
SNR are particularly harmful to speech intelligibility.
The SNR overestimation errors were attributed primarily
to the underestimation of the noise spectrum (Kim and
Loizou, 2011), which is needed for the computation of
the SNR. Most noise-estimation algorithms underesti-
mate the value of the noise spectral variance as they
are unable to follow fast increases in noise level. A the-
oretical upper bound (Eq. (13)) on the gain function was
derived that can be used to constrain the values of the
gain function so as to ensure that SNR overestimation
errors are minimized. Speech enhancement algorithms
that can limit the values of the gain function to fall
within this upper bound can improve speech intelligibility
(Loizou and Kim, 2011; Kim and Loizou, 2011). Overall,
the outcomes of the present study suggest that better
methods are needed to estimate the spectral SNR from
noisy observations, particularly at low input SNR levels.
Such methods hold promise for improving speech intelli-
gibility (e.g., Kim et al., 2009).
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