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The conventional articulation index (AI) measure cannot be applied in situations where non-linear

operations are involved and additive noise is present. This is because the definitions of the target

and masker signals become vague following non-linear processing, as both the target and masker

signals are affected. The aim of the present work is to modify the basic form of the AI measure to

account for non-linear processing. This was done using a new definition of the output or effective

SNR obtained following non-linear processing. The proposed output SNR definition for a specific

band was designed to handle cases where the non-linear processing affects predominantly the target

signal rather than the masker signal. The proposed measure also takes into consideration the fact

that the input SNR in a specific band cannot be improved following any form of non-linear process-

ing. Overall, the proposed measure quantifies the proportion of input band SNR preserved or trans-

mitted in each band after non-linear processing. High correlation (r¼ 0.9) was obtained with the

proposed measure when evaluated with intelligibility scores obtained by normal-hearing listeners

in 72 noisy conditions involving noise-suppressed speech corrupted in four different real-world

maskers. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3605668]

PACS number(s): 43.71.Gv, 43.71.An [AA] Pages: 986–995

I. INTRODUCTION

A number of measures have been proposed in the litera-

ture to predict speech intelligibility in the presence of back-

ground noise. Among these measures, the articulation index

(AI) (French and Steinberg, 1947; Fletcher and Galt, 1950;

Kryter, 1962a; ANSI, 1997; Amlani et al., 2002) and speech-

transmission index (STI) (Steeneken and Houtgast, 1980;

Houtgast and Steeneken, 1985) are by far the most commonly

used today for predicting speech intelligibility. The AI mea-

sure was further refined to produce the speech intelligibility

index (SII) (ANSI 1997). The AI measure is based on the

principle that the intelligibility of speech depends on the pro-

portion of spectral information that is audible to the listener

and is computed by dividing the spectrum into 20 bands (con-

tributing equally to intelligibility) and estimating the weighted

average of the signal-to-noise ratios (SNRs) in each band

(Kryter, 1962a, 1962b; Pavlovic, 1987; ANSI, 1997; Amlani

et al., 2002). The SNRs in each band are weighted by band-

importance functions which differ across speech materials

(ANSI, 1997). The AI measure has been shown to predict suc-

cessfully the effects of linear filtering and additive noise on

speech intelligibility (e.g., Kryter, 1962a, 1962b).

The AI measure has, however, a number of limitations.

First, it has been validated for the most part only for steady

(stationary) masking noise since it is based on the long-term

average spectra of the speech and masker signals. As such, it

cannot be applied to situations in which speech is embedded

in fluctuating maskers (e.g., competing talkers). Several

attempts have been made to extend the AI measure to assess

speech intelligibility in fluctuating maskers (Rhebergen

et al., 2005, 2006; Kates, 1987). Second, according to the

ANSI (1997) standard, the SII measure cannot be used in

conditions which include multiple sharply filtered bands of

speech or sharply filtered noises. Incidentally, sharply fil-

tered bands of speech can be produced when speech is

processed via spectral-subtractive algorithms due to the non-

linear thresholding of the speech envelopes (Goldsworthy

and Greenberg, 2004; Loizou, 2007). Third, it cannot be

applied in situations where non-linear operations are

involved and additive noise is present. This is because the

definitions of the target and masker signals are no longer

clear following non-linear processing, as both the target and

masker signals are affected. Consequently, the definition of

the true output SNR, namely, the effective SNR following

non-linear processing, poses great challenges. In contrast, in

situations wherein speech is subjected to linear filtering

operations (e.g., low-pass filter), the SNR can be determined

based on the target and masker signals prior to mixing.

Extensions to the AI index based on a different definition of

the SNR were proposed by Kates and Arehart (2005) to pre-

dict the intelligibility of peak-clipping and center-clipping

distortions, such as those introduced by hearing aids. The

modified index, called the CSII index, used the base form of

the SII procedure, but with the signal-to-noise ratio term

a)Author to whom correspondence should be addressed. Electronic mail:

loizou@utdallas.edu
b)Work done while Dr. Jianfen Ma visited Prof. Loizou’s lab as a research

scholar.

986 J. Acoust. Soc. Am. 130 (2), August 2011 0001-4966/2011/130(2)/986/10/$30.00 VC 2011 Acoustical Society of America

Downloaded 05 Aug 2011 to 129.110.5.92. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



replaced by the signal-to-distortion ratio, which was com-

puted using the coherence function between the input and

processed signals. Only a few studies have attempted to

extend the AI index to handle non-linear processing (French

and Steinberg, 1947; Stelmachowicz et al., 1998; Kates and

Arehart, 2005; Taal et al., 2010). Stelmachowicz et al.
(1998) modified the AI index to account for the differences

in audibility provided by wide dynamic-range compression

algorithms used in hearing aids.

The last limitation of the AI measure is also shared by

the STI measure. When speech is subjected to non-linear

processes such as those introduced by dynamic envelope

compression (or expansion) in hearing aids, the STI measure

fails to successfully predict speech intelligibility since the

processing itself might introduce additional modulations

which the STI measure interprets as increased SNR (Hoh-

mann and Kollmeieir, 1995; Ludvigsen et al., 1993; Van

Buuren et al., 1999; Goldsworthy and Greenberg, 2004).

The STI measure has also failed to predict the lack of intelli-

gibility benefit with spectral-subtractive noise reduction

algorithms. Ludvigsen et al. (1993), for instance, have

shown that in spite of the increased speech modulations and

increase in STI values, the intelligibility of signals processed

via the spectral-subtractive algorithm is not better than that

of unprocessed signals. A number of methods (Dubbelboer

and Houtgast, 2008; Goldsworthy and Greenberg, 2004)

have been proposed to circumvent this limitation, but these

methods cannot be easily extended to the AI measure. Both

the AI and STI measures compute the SNR in each band;

however, the SNR values are derived differently and the two

measures are based on different principles. The STI measure

(Steeneken and Houtgast, 1980) is based on the principle

that the reduction in intelligibility caused by additive noise

or reverberation distortions can be modeled in terms of the

reduction in temporal envelope modulations. In contrast, the

AI measure does not consider or account for any envelope

modulation reduction/increase in its computation, but rather

computes directly the SNR in each band (see review by

Amlani et al., 2002).

The present study takes the first step in modifying the

base structure of the AI measure to handle non-linear proc-

essing, particularly when noise is present. More precisely, it

considers the non-linear processing involved when the cor-

rupted signals are processed via noise-reduction algorithms.

It does not consider the non-linear distortions introduced by

hearing aids (e.g., wide-dynamic compression, peak-clipping

distortion) since those have been studied extensively by

Kates and colleagues (Kates, 1992; Kates and Arehart, 2005;

Kates, 2010). Nonetheless, the proposed model can poten-

tially be extended to handle hearing-aid like distortions, but

the focus of this article is on modeling the distortions intro-

duced by noise-suppression algorithms. A new definition of

output SNR is proposed which is used in conjunction with

the traditional SNR definition to derive a new intelligibility

measure. The proposed output SNR definition is designed to

handle cases where the non-linear processing affects pre-

dominantly the target signal rather than the masker signal.

The issues and problems surrounding the definition of SNR

when non-linear processes are involved are discussed in the

next section, followed by the evaluation of the proposed

measure with speech intelligibility scores collected in our

prior study (Hu and Loizou, 2007) assessing the evaluation

of noise-reduction algorithms.

II. CHALLENGES IN DETERMINING THE EFFECTIVE
SNR FOLLOWING NON-LINEAR PROCESSING

Most (if not all) noise-suppression algorithms employed

for hearing aids or for other applications involve a gain

reduction stage, in which the mixture envelope or spectrum

is multiplied by a gain function Gk (taking typically values

ranging from 0 to 1) with the intent of suppressing back-

ground noise, if present. The amount of gain reduction

depends, among others, on the detected modulation rate or

estimated SNR, and typically no gain is applied if the esti-

mated SNR is found to be too high (e.g., > 12 dB in some

hearing aids) (see Fig. 9 in Chung, 2004). Figure 1 shows the

signal-processing framework used in the present study. The

noisy speech envelope (denoted as SþN, where S¼ target

signal and N¼masker signal) extracted at a specific band is

non-linear processed to produce the output Ŝ. Note that in

quiet, the masker signal can be constructed using “internal

noise” that is added at the appropriate level based on the

absolute pure-tone hearing threshold (French and Steinberg,

1947; Pavlovic, 1987). In hearing aid applications, the proc-

essed envelope Ŝ would represent the output of a non-linear

operation (e.g., dynamic range compression) which can be

expressed mathematically as Ŝ¼ f(SþN), where f(.) repre-

sents the non-linear function (e.g., compression, expansion,

etc.) used. In noise-reduction applications, the f(.) function

would represent the noise-suppressive gain function (e.g.,

see Fig. 9 and Table II in Chung, 2004) that is applied to the

noisy speech envelopes in order to suppress the background

noise. In most cases, the gain function is highly non-linear.

In the power spectral-subtractive algorithm (Boll, 1979), for

instance, the gain function takes the form:

Gk ¼ max 0; 1� N̂2
k

Y2
k

� �
(1)

where N̂2
k denotes the estimated masker power-spectrum and

Yk denotes the corrupted (SþN) spectrum (envelope) in

FIG. 1. Signal-processing framework used in the present study for analyz-

ing non-linear operations in the presence of noise. The dashed block shows

the additional stage used in most noise-reduction applications to compute

parameters such as band SNR, modulation rate, etc. These parameters are in

turn used to construct a noise-suppressive gain function. The function f(.)
represents generally the gain function used in noise-reduction or the non-

linear function (e.g., compression function) used in hearing-aid applications.
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band k (the max operator is used to ensure that the gain

function is always positive). Following the computation of

Eq. (1), the gain function Gk is applied to the noisy speech

spectrum Yk in band k to produce the output envelope Ŝk,

i.e., Ŝk ¼ f(Yk)¼Gk � Yk. In the present study, eight different

non-linear functions Gk, representing eight different noise-

reduction algorithms (see description in Hu and Loizou,

2007) are used to test the proposed intelligibility index.

The non-linear processing of the noisy speech envelopes

(Fig. 1), whether be for noise suppression applications or

dynamic-range compression as implemented in hearing aids,

poses certain challenges in terms of defining the effective

output band SNR based on Ŝk. This is so because the non-

linear function (e.g., gain Gk in noise-reduction applications)

affects both the target and masker signals and thus we can

no longer assume that the output envelope Ŝk always corre-

sponds to the modified (e.g., attenuated, compressed, etc.)

target signal. To see this, we can express the square of the

output (non-linearly processed) envelope, i.e., Ŝ2
k , as follows:

Ŝ2
k ¼ G2

kY2
k ¼ G2

k S2
k þ N2

k

� �
¼ G2

kS2
k þ G2

kN2
k

¼ S2
T þ S2

M

(2)

where Sk denotes the clean signal envelope, Nk indicates the

masker envelope, ST
2 denotes the power of the modified (by

non-linear processing) target component and SM
2 (the sub-

script k was omitted for clarity) denotes the power of the

modified masker component of Ŝ2
k . Knowing whether the tar-

get component (i.e., ST
2) of the output envelope is dominant

is important in as far as defining the effective or output

band SNR.

A. Defining the output band SNR

Consider the corrupted (mixture) spectrum SþN in

band k (or frequency bin k) being processed by a noise-

reduction algorithm specified by the gain function Gk. Since

the masker is additive, the gain function is applied to both

the target spectrum Sk and the masker spectrum Nk (see

Eq. (2) above). Consequently the output SNR in band k,
denoted as SNRout(k), can be computed as follows:

SNRout kð Þ ¼ S2
T

S2
M

¼ GkSkð Þ2

GkNkð Þ2
¼ S2

k

N2
k

¼ SNRk (3)

where (GkSk)
2 denotes the power of the modified (by Gk) tar-

get signal in band k, (GkNk)
2 indicates the power of the

modified masker signal, and SNRk denotes the input band

SNR as determined prior to mixing. According to the above

equation, the output band SNR cannot be improved by any

choice of Gk beyond the value of the input band SNRk. This

observation partially explains the lack of intelligibility with

existing noise-reduction algorithms by NH listeners (Hu and

Loizou, 2007; Loizou, 2007) and hearing-impaired listeners

(Bentler et al., 2008), at least for algorithms that make use of

gain functions to suppress the background noise. In hearing-

aid applications, methods that reduce upward spread of

masking can potentially be used in place of the noise-

suppressive gain functions to improve speech intelligibility

in noise (see review by Levitt, 1997). It is worth mentioning

that while noise-reduction algorithms do not improve the

SNR in a specific band, they can improve the overall SNR

accumulated (and appropriately weighted) across all bands.

Note that the overall SNR (computed across all bands) and

the output band SNR [computed for a specific band as per

Eq. (3)] are different. One strategy for improving the overall

SNR (defined as the weighted sum of SNRs across all bands)

is to discard bands with unfavorable (extremely low) SNRs

while retaining bands with favorable SNR (see proof in

Loizou and Kim, 2011). Such an approach was taken in our

prior study and has been shown to improve speech intelligi-

bility by normal-hearing listeners (Kim et al., 2009) as well

as by cochlear implant listeners (Hu and Loizou, 2008).

Clearly, the above definition of output band SNR is not

useful as it does not involve the output or processed enve-

lope Ŝ. Alternatively, the output band SNR can be defined as

follows (Ma et al., 2009):

SNRk ¼
Ŝ2

k

N2
k

(4)

where SNRk denotes the new definition of the output SNR in

band k, and Ŝk denotes the processed (via, say, a noise-reduc-

tion algorithm) envelope. Similar to the AI computation, the

above SNR was limited, mapped to [0,1] and weighted by

band-importance functions (BIFs) in the study by Ma et al.
(2009). The above measure, however, yielded a poor correla-

tion (r< 0.4) with intelligibility scores (Ma et al., 2009). We

believe that it was because of the inherent ambiguity associ-

ated with non-linear processing when the Gk suppression

function is applied to the noisy speech envelopes. More spe-

cifically, when the corrupted envelope is processed by a

noise-reduction algorithm (via the application of the gain

function Gk), it is not clear whether the resulting envelope Ŝ
corresponds predominantly to say the modified (e.g., attenu-

ated) target envelope or the modified masker envelope [see

Eq. (2)]. Consequently, we cannot easily define the “true”

output band SNR as we do not know beforehand whether Ŝ
reflects primarily the modified masker envelope or the modi-

fied target envelope.

It is clear from the above discussion that a distinction

needs to be made in Eq. (4) to reflect the scenarios in which

the non-linear processing affects primarily (or predomi-

nantly) the target envelope rather than the masker envelope.

If the target envelope is dominantly larger than the masker

envelope (i.e., SNR � 0 dB) then the envelope Ŝ will most

likely reflect the modified target envelope (since the masker

component will be extremely small), whereas if the masker

envelope is dominantly larger than the target envelope (i.e.,

SNR � 0 dB) then the envelope Ŝ will most likely reflect

the modified masker envelope (since the target component

will be extremely small). Determining, however, the appro-

priate SNR threshold to discriminate between these two

scenarios is not straightforward given that the non-linear

processing affects both the target and masker envelopes;
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hence we considered an alternative strategy for making the

distinction. There are two possible scenarios to consider. In

the first scenario Ŝ< S, suggesting attenuation of the target

envelope and in the second scenario Ŝ> S, suggesting ampli-

fication of the target envelope. As Ŝ gets significantly larger

than S (i.e., overestimation occurs), the corresponding

masker envelope also gets larger and at some point the input

band SNR will become negative. This is demonstrated in

Fig. 2 which shows the histogram of SNR values for all

bands for which Ŝ> S (histogram was computed for one sen-

tence processed by a spectral-subtractive algorithm at 0 dB

SNR). As can be seen, the input band SNR is for the most

part negative when Ŝ> S. In fact, it can be proven (see Ap-

pendix) that for a certain range of gain values, the input band

SNR is always negative when Ŝ> S. Furthermore, it can also

be proven analytically (see Appendix) that when Ŝ� 2 � S,
the corresponding input band SNR is always negative. Con-

sequently, bands for which Ŝ� 2 �S holds should not be

included since the speech information is masked. Hence, for

the most part, when Ŝ> S, the envelope Ŝ will likely reflect

the modified masker envelope and thus should not be used in

the definition of the output SNR in Eq. (4). Put differently,

when Ŝ> S the masker component of Ŝ will for the most part

be larger than the target component [i.e., SM> ST in Eq. (2)],

and thus Ŝ should not be used in Eq. (4).

B. Proposed intelligibility measure

In brief, as shown in Eq. (3) the output band SNR cannot

exceed the input band SNR. Second, the above limitations in

using Eq. (4) to compute the output band SNR can be circum-

vented to some extent if we identify the situations where Ŝ
better reflects the effects of non-linear processing (e.g., noise

reduction) on the target envelope rather than on the masker

envelope. As discussed above, the processed envelope Ŝ
reflects more reliably the effect of suppression on the target

envelope when Ŝ< S than when Ŝ> S. It seems reasonable

then to restrict Ŝ in Eq. (4) to be always smaller than S, and

thus consider in the computation of the proposed measure

only bands in which Ŝ< S. The implicit hypothesis is that

those bands will contribute more to intelligibility and should

thus be included. This was confirmed in listening studies

(Loizou and Kim, 2011) in which normal-hearing listeners

were presented with speech synthesized to contain either tar-

get attenuation distortions alone (i.e., bands with Ŝ< S) or

target amplification distortions alone (i.e., bands with Ŝ> S).

Speech synthesized to contain only target attenuation was

always more intelligible, and in fact, it was found to be more

intelligible than either the un-processed (noise corrupted) or

processed (via the noise-reduction algorithm) speech.

After taking the above facts into account, we derive a

new measure which computes the fraction or proportion of

the input SNR transmitted as follows:

fSNRk ¼
min SNRk; SNRk

� �
SNRk

if SNRk � SNRL

0 else

8<
: (5)

where fSNRk denotes the fraction (or proportion) of the input

SNR transmitted (by the noise-reduction algorithm), SNRk is

given by Eq. (4), SNRk is the true SNR [see Eq. (3)] and

SNRL denotes the smallest SNR value allowed. It is clear that

fSNRk, is bounded by 1, i.e., 0� fSNRk� 1, and thus denotes

the fraction (or proportion) of the input SNR preserved (or

transmitted) by the noise-reduction algorithm in a specific

band. The maximum value of 1 is attained by fSNRk when no

non-linear processing (i.e., Gk¼ 1) is applied to the noisy

envelopes. A value close to 1 can also be obtained when Ŝ �
S, i.e., when the noise-reduction algorithm produces an accu-

rate estimate of the clean target spectrum. The use of mini-

mum operation in Eq. (5) ensures that only bands for which

Ŝ< S are included. Furthermore, only bands with SNR falling

above a certain value (e.g., SNRL> 0 dB) are considered.

This is necessary for two reasons. First, the condition Ŝ< S
does not guarantee that the input SNR will always be positive.

Second, use of SNRL> 0 dB always guarantees that the target

component of the output envelope will always be larger than

the masker component [see Eq. (2)]. Following Eq. (5), the

new measure is weighted and accumulated across all bands to

produce the fractional AI (fAI) index:

fAI ¼ 1

PM
k¼1

Wk

XM

k¼1

Wk 	 fSNRk (6)

where Wk denotes the weighting functions or band-impor-

tance functions applied to band k and M is the total number of

bands used. Unlike the traditional AI measure, the proposed

fAI measure is computed based on the weighted average of

the proportion of the input SNR transmitted by the noise-sup-

pression algorithm in each band. Note that in the traditional

AI measure, the fSNRk values are replaced by the audibility

functions (ranging from 0 to 1) expressing the proportion of

speech information that is audible to the listener.

Given that most noise-suppression algorithms operate

on short-time segments (20–30 ms frames), the above

FIG. 2. (Color online) Histogram of band SNRs for corresponding bands in

which Ŝ> S after noise- suppression. Band SNRs were determined for each

time-frequency (T-F) unit, and accumulated over the duration of a sentence.
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measure [Eq. (6)] can be computed for each frame and aver-

aged across all frames to produce a single value for each sen-

tence. Figure 3(c) shows example short-term fAI values

computed over a sentence that has been processed by the

spectral-subtractive noise-suppression algorithm. The sen-

tence was corrupted by babble at 0 dB SNR. For this exam-

ple, SNRL was set to 0 dB and no weighting was applied to

the fSNRk values, i.e., Wk¼ 1. The spectrograms of the clean

and processed sentences are shown in Figs. 3(a) and 3(b).

From Fig. 3 we observe that the fAI value was high near the

t¼ 400 ms and 800 ms segments, and low for the remaining

words/phonemes. This was consistent with the amount of

“clean” speech information (e.g., formant movements) that

was evident in the spectrogram of the noise-suppressed sig-

nal [Fig. 3(b)]. We can thus, say, that the fAI measure can be

regarded as a microscopic measure in as far as having the

potential to predict the intelligibility of non-linearly proc-

essed speech at the phoneme or word level.

C. Implementation

The proposed fAI measure [Eq. (6)] was implemented as

follows. The speech signals were first segmented using 50-

ms duration Hamming windows with 75% overlap between

adjacent frames. The critical-band spectra of the target and

masker signals (prior to mixing) and the processed signals

were obtained for each 50-ms frame by multiplying the FFT

magnitude spectra by 25 overlapping Gaussian-shaped win-

dows (Loizou, 2007, Ch. 11) spaced in proportion to the

ear’s critical bands and summing up the power within each

FIG. 3. (Color online) Panel (a) shows the wideband spectrogram of the IEEE sentence “The young kid jumped the rusty gate.” in quiet, and panel (b) shows

the sentence processed via a spectral- subtractive algorithm. The input sentence was originally corrupted by babble at 0 dB SNR. Panel (c) shows the corre-

sponding short-term fAI values computed every 50 ms. The resulting average fAI value was 0.032.
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band. The center frequencies of the 25 critical-band like

bands are given in Table I. Equations (4)–(6) were then used

to compute the fAI values for each frame, which were in

turn averaged across all frames to produce a single value for

each sentence. For BIFs, we considered the ANSI weights1

(ANSI, 1997) (see Table I) as well as the signal-dependent

weighting function proposed in our prior study (Ma et al.,
2009):

Wk ¼ Skð Þp (7)

where Sk denotes the target signal (prior to mixing) raised to

the power p. To assess the effect of the SNRL value [Eq. (5)]

on performance, we varied its value from 0 dB to 14 dB.

III. INTELLIGIBILITY DATA

Data taken from the intelligibility evaluation of noise-

corrupted speech processed through eight different noise-

suppression algorithms and presented to normal-hearing lis-

teners were used in the present study (Hu and Loizou, 2007).

IEEE sentences (IEEE, 1969) were used as test material. The

masker signals were taken from the AURORA database

(Hirsch et al., 2000) and included the following real-world

recordings from different places: babble, car, street, and

train. The maskers were added to the speech signals at SNRs

of 0 and 5 dB. A total of 40 native speakers of American

English were recruited for the sentence intelligibility tests.

The intelligibility study by Hu and Loizou (2007) pro-

duced a total of 72 noisy conditions including the noise-

corrupted (unprocessed) conditions. The 72 conditions

included non-linear distortions introduced by 8 different

noise-suppression algorithms operating at two SNR levels

(0 and 5 dB) in four types of real-world environments (bab-

ble, car, street, and train). Eight different gain functions

were thus used to process the noisy speech (see description

in Hu and Loizou, 2007) for each SNR condition. The sim-

plified spectral-subtractive gain function depicted in Eq. (1)

was only one of the 8 different gain functions tested. The

intelligibility scores obtained in the 72 conditions were used

in the present study to evaluate the predictive power of the

proposed fAI measure.

IV. EVALUATION OF PROPOSED INTELLIGIBILITY
MEASURE

The average intelligibility scores obtained by normal-

hearing listeners in 72 different noisy conditions (Hu and

Loizou, 2007) were subjected to correlation analysis with

the corresponding mean values obtained with the proposed

fAI measure. The resulting correlation coefficients (r) and

prediction errors (re) are given in Table II for different val-

ues of SNRL and different BIFs. For comparative purposes,

we also tabulate the corresponding correlation coefficients

obtained with the CSII measure for the same data and same

conditions (Ma et al., 2009).

As shown in Table II, the performance of the proposed

fAI measure was clearly influenced by the choice of BIF and

SNRL value. A high correlation (r¼ 0.86) was obtained with

the fAI measure when the ANSI weights were used and

SNRL¼ 11 dB. The corresponding correlation obtained with

the CSII measure was 0.82. Even higher correlation (r¼ 0.9)

was obtained with fAI when the signal-dependent BIF

[Eq. (7)] were used and SNRL¼ 9 dB or SNRL¼ 11 dB.

Figure 4 shows the scatter plot of fAI values and intelligibil-

ity scores. A logistic-type function of the form (Fletcher and

Galt, 1950; Amlani et al., 2002):

I ¼ 1� 10�x�P=Q
� �2

TABLE I. Articulation index weights (ANSI, 1997) used in the implemen-

tation of the proposed measure.

Band Center frequencies (Hz) Weight

1 50.0000 0.0064

2 120.000 0.0154

3 190.000 0.0240

4 260.000 0.0373

5 330.000 0.0803

6 400.000 0.0978

7 470.000 0.0982

8 540.000 0.0809

9 617.372 0.0690

10 703.378 0.0608

11 798.717 0.0529

12 904.128 0.0473

13 1020.38 0.0440

14 1148.30 0.0440

15 1288.72 0.0470

16 1442.54 0.0489

17 1610.70 0.0486

18 1794.16 0.0491

19 1993.93 0.0492

20 2211.08 0.0500

21 2446.71 0.0538

22 2701.97 0.0551

23 2978.04 0.0545

24 3276.17 0.0508

25 3597.63 0.0449

TABLE II. Correlation coefficients, r, and prediction error (re) between

sentence recognition scores and the proposed fAI measure for two sets of

band-importance functions (BIFs). The corresponding correlations obtained

with the CSII measure are also shown for comparison.

Measure BIF SNRL (dB) r re

CSII ANSI – 0.82 0.10

fAI ANSI 0 0.82 0.10

fAI ANSI 6 0.86 0.09

fAI ANSI 9 0.86 0.09

fAI ANSI 11 0.86 0.09

fAI ANSI 14 0.85 0.09

CSII Eq. (7), p¼ 4 – 0.86 0.09

fAI Eq. (7), p¼ 2 0 0.80 0.11

fAI Eq. (7), p¼ 2 6 0.87 0.08

fAI Eq. (7), p¼ 2 9 0.90 0.08

fAI Eq. (7), p¼ 2 11 0.90 0.08

fAI Eq. (7), p¼ 2 14 0.89 0.08
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was used for the fitting of the fAI values, where I is the

subject’s intelligibility score (in proportion correct),

x¼ fAI, P¼ 27.5, and Q¼ 8.4. Based on the above fitting

(transfer) function, high intelligibility (> 90% correct) is

predicted for fAI values greater than 0.5. Note that a sim-

ilar prediction is obtained when using the AI transfer

function (Fletcher and Galt, 1950, Fig. 7) for sentences.

The slope of the derived transfer function is, however,

shallower (for values smaller than 0.5) than the sentence

AI transfer function but matches closely to the transfer

function of the Modified Rhyme Test (MRT) words

(Amlani et al., 2002, Fig. 4). Figure 5 plots the observed

scores (in percentage) against the predicted scores for all

72 conditions tested (r¼ 0.9).

FIG. 4. Scatter plot of speech intel-

ligibility scores and predicted fAI

values for 72 noisy conditions

involving noise-suppressed speech

in four different masker conditions

(babble, car, train and street inter-

ferences) and two SNR levels.

FIG. 5. Scatter plot of observed

intelligibility scores (expressed in

percentage) and predicted scores for

the 72 noisy conditions tested.
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When tested on the same dataset, the corresponding

correlation with the CSII measure, implemented using the

signal-dependent BIFs, was found to be 0.86. Overall,

the proposed fAI measure outperformed the CSII measure

in predicting the intelligibility of non-linear processed

speech.

The choice of SNRL in Eq. (5) had a clear influence in

the performance of the proposed fAI measure. We believe

that this was because the value of SNRL affects how domi-

nant are the target components (of the output envelopes)

included in the computation of the fAI measure. When

SNRL is large, only dominantly large target components are

allowed to enter in the computation of the fSNR values, and

the “optimum” value for our test set seems to be around

9–11 dB. That is, when SNRL is large, we have ST � SM

[Eq. (2)], and the output band SNR truly reflects the effect of

non-linear processing on the target component. When SNRL

exceeds a certain value (11 dB in our case), however, fewer

bands enter the computation of the fAI value rendering the

computation of the fAI somewhat unreliable (owing to the

small number of samples considered), particularly in the low

input SNR conditions. As a result, the contribution of the

non-linear processing in most bands is not accounted for in

the computation of fAI. This explains the slight decline in

performance when SNRL> 11 dB. At the other end, when

SNRL is near 0 dB, the target component, although larger

than the masker component, is not dominant but rather

comparable in magnitude. Consequently, the output band

SNR is slightly overestimated. Overall, high correlations

were consistently obtained for SNRL values in the range of

6–11 dB.

Performance improved dramatically when the signal-

dependent BIFs were used [Eq. (7)]. As argued by Ma

et al. (2009), the choice and importance of BIFs becomes

more critical in situations wherein short-term processing is

involved and fluctuating maskers are used, as was the

case in the present study. In contrast, in the implementa-

tion of the conventional AI measure it suffices to use a

single, albeit material dependent, BIF since the measure is

computed based on the (single) long-term averaged spec-

tra of the target and masker signals. As demonstrated in

our prior study (Ma et al., 2009), the best and simplest

BIF to use is the target signal spectrum itself [Eq. (7)].

This is consistent with the notion that, for vowels, more

weight should be placed on the bands containing spectral

peaks as those convey information about the formants.

Similarly applicable for consonants, more weight should

be placed on the spectral peaks as those convey informa-

tion about place of articulation (e.g., Liberman et al.,
1952). The power exponent p used in Eq. (7) controls the

weight placed on spectral peaks and/or spectral valleys

and can be optimized for different speech materials (Ma

et al., 2009).

The present study focused on modifying the basic form

of the AI measure to account for non-linear processing.

Compared to the SII index implementation (ANSI, 1997),

however, which incorporates upward-spread of masking

effects and level distortion factors, the fAI implementation

was rather simplistic. Yet, despite these limitations, the

proposed fAI measure performed quite well (r¼ 0.9). Fur-

ther experiments are needed to examine whether additional

improvements in performance can be obtained if upward-

spread of masking effects or level distortion effects are

incorporated.

From the scatter plot shown in Fig. 4 we observe that

the average fAI values did not exceed the value of 0.4. It

should be noted, however, that the individual short-term

values of fAI sometimes exceed 0.4, but the average is

biased toward lower values due to the extremely low fAI val-

ues obtained during unvoiced segments, which also happen

to be the low SNR segments (see Fig. 3). This implies that

on the average only 10%–40% of the input SNR is preserved

or transmitted by most noise-reduction algorithms, at least

for algorithms operating at the two SNR levels examined (0

and 5 dB). This average is based on values accumulated

from all phonetic segments across the utterance, including

vowels and consonants. The proportion of input SNR pre-

served for low-energy consonants was extremely low (see

example in Fig. 3) compared to that of vowels. This was not

surprising since the low-energy consonants are masked more

easily by background noise than the high-energy vowels

(Parikh and Loizou, 2005) and most noise-reduction algo-

rithms perform poorly in segments containing consonants. It

is thus possible that if noise reduction algorithms could

somehow preserve or maintain a larger portion of the input

SNR during the low-energy consonant segments, then

improvement in speech intelligibility might be noted. Further

research work is warranted to examine that.

V. CONCLUSIONS

The present study proposed a simple modification to

the AI measure to account for non-linear processing (e.g.,

noise reduction) in the presence of additive noise. The

modification was based on the following two observations.

First, the input SNR in a specific band cannot be improved

following any form of non-linear processing [Eq. (3)].

Second, the output (or processed) envelope Ŝ reflects more

reliably the effect of suppression or non-linear processing

on the target envelope when Ŝ< S than when Ŝ> S. Taking

the above two observations into account, a new measure

(fAI) was proposed [Eq. (6)]. Only bands with input band

SNR exceeding a certain threshold (denoted as SNRL) were

included in the computation [see Eq. (5)]. This ensured that

the target component of the output envelope was always

larger than the masker component, thereby providing a

more reliable estimate of the output or effective SNR

[Eq. (4)]. The proposed fAI measure was evaluated with

speech intelligibility scores collected in our prior study (Hu

and Loizou, 2007) involving noise-suppressed speech in

four different masker conditions and two SNR levels. High

correlation (r¼ 0.9) was obtained with the proposed

measure when SNRL¼ 11 dB and signal-dependent band-

importance functions (Ma et al., 2009) were used. In

comparison, the highest correlation obtained with the CSII

measure (Kates and Arehart, 2005) was r¼ 0.86 when

tested in the same conditions.
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APPENDIX

In this appendix, we derive the upper bounds on the

SNR when the processed signal Ŝ (following noise-reduc-

tion) is larger than the input (clean) target signal S. More

precisely, we consider the scenarios when Ŝ> S or when

Ŝ> 2�S. These bounds are important as they directly affect

the definition of the output band SNR. Following the appli-

cation of the gain function Gk on the noisy envelopes Yk

(Fig. 1), we can express the squared output (or processed)

envelope Ŝ as follows:

Ŝ2 ¼ G2 S2 þ N2
� �

; (A1)

where S denotes the clean signal envelope and N indicates

the masker envelope. After dividing both sides by S2, we

have:

Ŝ2

S2
¼ G2 1þ 1

SNR

� �
; (A2)

where SNR¼ S2/N2. If Ŝ> S, or equivalently Ŝ/S> 1, we

have the following inequality:

G2 1þ 1

SNR

� �
> 1

SNR <
G2

1� G2
: (A3)

From the above, it is easy to show that for a specific range of

the gain function, i.e., 0�G� 0.707, we have SNR< 1 or

equivalently SNRdB< 0 dB. When G> 0.7, the SNR (in dB)

will be positive. Hence, for a large range of gain values, the

SNR will always be negative, consistent with the histogram

shown in Fig. 2.

In the scenario where Ŝ> 2 � S, or equivalently Ŝ/S> 2,

we have the following inequality:

SNR <
G2

2� G2
; (A4)

and given that the gain function is typically bounded by 1,

i.e., 0�G� 1, we have:

SNR < 1; (A5)

suggesting that when Ŝ> 2 � S, the input SNR (in dB) is always

negative. This means that the masker component of Ŝ will

always be larger than the target component when Ŝ> 2 � S.

1The ANSI (1997) band-importance functions (BIFs) were interpolated to

account for the frequency spacing used (Table I). Due to the interpolation,

the BIF values did not add up to one. This however did not affect the per-

formance of the proposed intelligibility measure, as the measure was nor-

malized by the sum of the BIF values [see Eq. (6)].
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