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A single-channel algorithm is proposed for noise reduction in cochlear implants. The proposed
algorithm is based on subspace principles and projects the noisy speech vector onto “signal” and
“noise” subspaces. An estimate of the clean signal is made by retaining only the components in the
signal subspace. The performance of the subspace reduction algorithm is evaluated using 14 subjects
wearing the Clarion device. Results indicated that the subspace algorithm produced significant
improvements in sentence recognition scores compared to the subjects’ daily strategy, at least in
stationary noise. Further work is needed to extend the subspace algorithm to nonstationary noise
environments. © 2005 Acoustical Society of America. �DOI: 10.1121/1.2065847�
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I. INTRODUCTION

Several noise-reduction algorithms have been proposed
for cochlear implant �CI� users �van Hoesel and Clark, 1995;
Hamacher et al., 1997; Wouters and Vanden Berghe, 2001�.
Most of these algorithms, however, were based on the as-
sumption that two or more microphones were available. van
Hoesel and Clark �1995� tested an adaptive beamforming
technique with four Nucleus-22 implantees using signals
from two microphones—one behind each ear—to reduce
noise coming from 90° of the patients. Results indicated that
adaptive beamforming with two microphones can bring sub-
stantial benefits to CI users in conditions for which rever-
beration is moderate, and only one source is predominantly
interfering with speech. Adding, however, a second micro-
phone contralateral to the implant is ergonomically difficult
without requiring the CI users to wear headphones or a neck-
loop �bilateral implants might provide the means, but their
benefit is still being investigated�. Alternatively, monaural
multimicrophone techniques can be used and such tech-
niques are now becoming commercially available �e.g.,
BEAM in Nucleus devices�.

In general, single-microphone noise reduction algo-
rithms are more desirable and cosmetically more appealing
than the algorithms based on multiple-microphone inputs. A
few single-microphone noise-reduction strategies �Weiss,
1993; Hochberg et al., 1992; Yang and Fu, 2005� have been
proposed for cochlear implants, some of which were imple-
mented on old cochlear implant processors based on feature
extraction strategies �F0/F1/F2 and MPEAK strategies� and
some of which were implemented on the latest processors.
Weiss �1993� demonstrated that preprocessing the signal
with a standard noise reduction algorithm could reduce the
errors in formant extraction. The latest speech processors,
however, are not based on feature extraction strategies but
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are based on vocoder-type strategies. Recently, Yang and Fu
�2005� evaluated a spectral-subtractive algorithm using the
latest implant processors. Significant benefits in sentence
recognition were observed for all subjects with the spectral-
subtractive algorithm, particularly for speech embedded in
speech-shaped noise.

In brief, only a few studies �e.g., Yang and Fu, 2005�
were conducted to investigate the benefits of preprocessing
the noisy speech signal by a noise reduction algorithm and
feeding the enhanced signal to implant listeners. In the
present study we evaluate the performance of a subspace
noise reduction algorithm that is used as a preprocessor for
signal enhancement.

II. EXPERIMENT 1: EVALUATION OF SUBSPACE
ALGORITHM

In this experiment, we investigate the potential benefits
of first preprocessing the noisy signal with a noise reduction
algorithm and then feeding the “enhanced” signal to the CI
processor. For noise reduction, we use a custom subspace-
based algorithm �Hu and Loizou, 2002�.

A. Subjects

A total of 14 Clarion implant users participated in this
experiment consisting of 9 Clarion CII patients and 5 Clarion
S-series patients. The majority of the CII patients were fitted
with the CIS strategy, and the S-series patients were fitted
with the SAS strategy. All subjects had at least 1 yr of expe-
rience with their implant device �see Table I�.

B. Subspace algorithm

The signal subspace algorithm was originally developed
by Ephraim and Van Trees �1995� for white input noise and
was later extended to handle colored noise �e.g., speech-
shaped noise� by Hu and Loizou �2002�. The underlying
principle of the subspace algorithm is based on the projection
of the noisy speech vector �consisting of, say, a segment of
speech� onto two subspaces: the “signal” subspace and the

“noise” subspace. The noise subspace contains only signal
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components due to the noise, and the signal subspace con-
tains primarily the clean signal. Therefore, an estimate of the
clean signal can be made by removing the components of the
signal in the noise subspace and retaining only the compo-
nents of the signal in the signal subspace.

Let y be the noisy vector, and let x̂=Hy be an estimate
of the clean signal vector, where H is a transformation ma-
trix. The noise reduction problem can be formulated as that
of finding a transformation matrix H, which, when applied to
the noisy vector, would yield the clean signal. After applying
such a transformation to the noisy signal, we can express the
error between the estimated signal x̂ and the true clean signal
x as �= x̂−x= �H−I�x+H n, where n is the noise vector.
Since the transformation matrix will not be perfect, it will
introduce some speech distortion, which is quantified by the
first term of the error term, i.e., by �H-I�x. The second term
�H n� quantifies the amount of noise distortion introduced by
the transformation matrix. As the speech and noise distortion
�as defined above� are decoupled, one can find the optimal
transformation matrix H that would minimize the speech dis-
tortion subject to the noise distortion falling below a preset
threshold. The solution to this constrained minimization
problem for colored noise is given by �Hu and Loizou,
2002�:

Hopt = V−T��� + �I�−1VT, �1�

where � is a parameter �typical values for �=1–20�, V is an
eigenvector matrix, and � is a diagonal eigenvalue matrix
obtained from the noisy speech vector �more details can
be found in Hu and Loizou, 2002, 2003�. In our imple-
mentation, we used a variable � that took values in the
range of 1 to 20 depending on the estimated short-term
signal-to-noise ratio �see Hu and Loizou, 2003�.

The above equation has the following interesting inter-
pretation. The matrix VT acts like a data-dependent trans-
form and projects the noisy speech vector into the noise and
signal subspaces. The diagonal matrix ���+�I�−1 multi-
plies the components of the signal in the signal subspace by

TABLE I. Subject information.

Subject Age Implant
CI use

(yr)

HINT
score

(quiet)

S1 41 Clarion CII 2 57
S2 26 Clarion CII 2 55
S3 39 Clarion CII 1 90
S4 41 Clarion CII 2 52
S5 70 Clarion CII 2 60
S6 55 Clarion CII 1 86
S7 58 Clarion CII 2 88
S8 66 Clarion CII 3 95
S9 38 Clarion CII 4 35

SS1 56 Clarion S series 1 60
SS2 45 Clarion S series 1 94
SS3 40 Clarion S series 1 55
SS4 52 Clarion S series 1 79
SS5 43 Clarion S series 1 80
a gain while zeroing out the components of the signal in the
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noise subspace. Finally, the matrix V−T transforms back the
projected signal, i.e., it acts like an inverse transform.

The implementation of the above signal subspace algo-
rithm can be summarized into two steps. Step �1�: For each
frame of noisy speech �y�, use the above transformation
given in Eq. �1� to obtain an estimate of the clean signal
vector x̂, i.e., x̂=Hopty. Step �2�: Use the estimated signal x̂
as input to the CI processor.

The above estimator was applied to 4 ms duration
frames of the noisy signal, which overlapped each other by
50%. The enhanced speech vectors were Hamming win-
dowed and combined using the overlap and add approach.
No voice activity detection algorithm was used in our ap-
proach to update the noise covariance matrix needed to com-
pute the matrix V. The noise covariance matrix was esti-
mated using speech vectors from the initial silent frames of
the sentences. Although this procedure for estimating the
noise covariance matrix is adequate for stationary noise
�such as the one used in this study�, it is not adequate for
nonstationary environments in which the background spectra
�and consequently the noise covariance matrices� constantly
change. In nonstationary environments �e.g., restaurant
noise�, the noise covariance matrix could be estimated and
updated whenever a speech-absent segment is detected based
on a voice activity detector or a noise-estimation algorithm.

C. Procedure

HINT sentences �Nilsson et al., 1994� corrupted in
+5 dB S/N speech-shaped noise �taken from the HINT data-
base� were used for evaluation. Six lists �60 sentences� were
processed offline in MATLAB by the subspace noise reduction
algorithm. The processed sentences were presented directly
to the subjects via the auxiliary input jack of their CI proces-
sor at a comfortable listening level. Subjects were fitted with
their daily strategy. For comparative purposes, subjects were
also presented with six different lists �60 sentences� of HINT
sentences corrupted in +5 dB speech-shaped noise, i.e., un-
processed sentences. The presentation order of preprocessed
and unprocessed sentences was randomized between sub-
jects.

D. Results and discussion

The sentences were scored in terms of the percent of
words identified correctly �all words were scored�. Figure 1
shows the percent correct scores for all subjects. The mean
score obtained with sentences preprocessed by the subspace
algorithm was 44% correct, and the mean score obtained
with unprocessed sentences was 19% correct. ANOVA �re-
peated measures� tests indicated that the sentence scores ob-
tained with the subspace algorithm were significantly higher
�F�1,13�=33.1, p�0.0005� than the scores obtained with
the unprocessed sentences. As can be seen from Fig. 1, most
subjects benefited from the noise reduction algorithm. Sub-
ject’s SS4 score, for instance, improved from 0% correct to
40% correct. Similarly, subjects’ SS1 and SS2 scores im-
proved from roughly 0% to 50% correct.

The above results indicate that the subspace algorithm

can provide significant benefits to CI users in regard to the
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recognition of sentences corrupted by stationary noise. It
should be noted that the above signal subspace algorithm
was only tested in stationary noise, and it is not clear
whether such an intelligibility benefit would be maintained if
the algorithm was tested in nonstationary environments �e.g.,
restaurant, multitalker babble�. Further work is needed to
extend the subspace algorithm to nonstationary noise envi-
ronments, particularly with regard to updating the noise co-
variance matrix based on perhaps a voice activity detector or
a noise-estimation algorithm.

FIG. 1. �Color online� The subjects’ performance on the identification of
words in sentences embedded in +5 dB S/N speech-shaped noise and pre-
processed �dark bars� by the subspace algorithm or left unprocessed �white
bars�. Subjects S1–S9 were Clarion CII patients and subjects SS1–SS5 were
Clarion S-series patients. Error bars indicate standard errors of the mean.
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