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Abstract-The performance of two noise reduction 
algorithms is evaluated using 14 subjects fitted with the 
Clarion S-Series and Clarion I1 implant devices. The first 
algorithm, based on signal subspace principles, is used for pre- 
processing sentences embedded in +5 dB noise. The second 
algorithm is based on the subtraction of the noisy speech 
envelopes from an estimate of the noise envelopes. The noise 
envelopes are estimated continuously using a variation of the 
minimum statistics algorithm. Results showed that the 
subspace algorithm produced significant improvements in 
sentence recognition scores compared to the subjects’ daily 
strategy. Small improvements were also obtained for a few 
subjects with the envelope subtraction algorithm. 
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I. INTRODUCTION 

Several noise-reduction algorithms have been proposed for 
cochlear implant (CI) users [1]-[5]. Most of these 
algorithms, however, were based on the assumption that two 
or more microphones were available. Hoesel and Clark [ l ]  
tested an adaptive beamforming technique with four 
Nucleus-22 implantees using signals from two microphones 
- one behind each ear- to reduce noise coming from 90’ to 
the left of the patients. Results indicated that adaptive 
beamforming with two microphones can bring substantial 
benefits to CI users in conditions for which reverberation is 
moderate and only one source is predominantly interfering 
with speech. Hamacher et al. [2] evaluated the performance 
of two adaptive beamforming algorithms in different 
everyday-life noise conditions. The mean benefit obtained 
by the beamforming algorithms for four CI users (wearing 
the Nucleus device) varied between 6.1 dB improvement in 
SNR for meeting-room conditions to 1.1 dB for cafeteria 
noise conditions. Similar SNR improvement of about 1 0-dB 
was also reported recently by Wouters and Berghe [3] using 
a 2-channel adaptive filtering noise-reduction algorithm 
evaluated with four LAURA implantees. 

In the above studies, it was assumed that two (or more) 
microphones were available, one behind each ear. Adding, 
however, a second microphone contralateral to the implant 
is ergonomically difficult without requiring the CI users to 
wear headphones or a neckloop [bilateral implants might 
provide the means, but their benefit is still being 
investigated]. Single-microphone noise reduction algorithms 
are therefore more desirable and cosmetically more 
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appealing. While a few single-microphone noise-reduction 
strategies [4][5] have been proposed for cochlear implants, 
those strategies were implemented on old cochlear implant 
processors, which were based on feature extraction 
strategies (FO/F 1 /F2 and MPEAK strategies). Weiss [4] 
demonstrated that preprocessing the signal with a standard 
noise reduction algorithm could reduce the errors in formant 
extraction. The latest speech processors, however, are not 
based on feature extraction strategies but are based on 
vocoder-type strategies. In vocoder-type strategies, no 
features need to be extracted, as the signal is bandpass 
filtered into n bands ( 8 5  n<22), and the envelopes of the 
signal are extracted from each band. Hence, it is not clear 
whether preprocessing the signal could benefit vocoder-type 
strategies, such as the CIS and SPEAK strategies, 
commonly used today. This question is addressed in 
Experiment 1, where the noisy signal is preprocessed 
through a subspace noise reduction algorithm and presented 
to CI users. 

Preprocessing noisy speech and presenting the 
“enhanced” speech to CI listeners might sometimes prove 
beneficial, but might not be the best approach. For one, pre- 
processing algorithms do not exploit or work synergistically 
with existing CI strategies. Secondly, we do not have much 
control on the effect of thl: pre-processing algorithms on the 
fine structure andor  envdope cues. In fact, in some cases 
those cues might be distorted. Ideally, we would like the 
noise reduction algorithm to be simple to implement and, 
most importantly, to be embedded in the existing coding 
strategies rather than being used ‘as a pre-processor. To that 
end, we propose in Experiment 2 a signal processing 
algorithm which can be incorporated in current coding 
strategies. 

11. EXPERIMENT 1 : EVALIJATION OF SUBSPACE ALGORITHM 

In this experiment, we investigate the potential benefits of 
first preprocessing the noisy signal with a noise reduction 
algorithm and then feeding the “enhanced” signal to the CI 
processor. For noise reduction, we use a custom subspace- 
based algorithm [6]  designed to minimize speech 
distortion. 

A .  Subjects 
A total of 14 Clarion implant users participated in this 

experiment. Nine Clarion CII patients and 5 Clarion S- 
Series patients were used as subjects. The majority of the 
CII patients were fitted with the CIS strategy, and the S- 
Series patients were fitted with the SAS strategy. 
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B. Subspace algorithm 
The signal subspace algorithm was originally developed by 

Ephraim and VanTrees [7] for white input noise and was 
later extended to handle colored noise (e.g., speech-shaped 
noise) by Hu and Loizou [6]. The underlying principle of the 
subspace algorithm is based on the projection of the noisy 
speech vector (consisting of, say, a segment of speech) onto 
two subspaces: the "signal" subspace and the "noise" 
subspace. The noise subspace contains only signal 
components due to the noise, and the signal subspace 
contains primarily the clean signal. Therefore, an estimate of 
the clean signal can be made by removing the components 
of the signal in the noise subspace and retaining only the 
components of the signal in the signal subspace. 

Let y be the noisy vector, and let i =Hy be an estimate 
of the clean signal vector, where H is a transformation 
matrix. The noise reduction problem can be formulated as 
that of finding a transformation matrix H, which when 
applied to the noisy vector would yield the clean signal. 
After applying such a transformation to the noisy signal, we 
can express the error between the estimated signal i and 
the true clean signal x as: E = i - x = (H - I)x + H n , where 
n is the noise vector. Since the transformation matrix will 
not be perfect, it will introduce some speech distortion, 
which is quantified by first term of the error term, i.e. by (H- 
1)x. The second term (H n) quantifies the amount of noise 
distortion introduced by the transformation matrix. As the 
speech and noise distortion (as defined above) are 
decoupled, one can find the optimal transformation matrix H 
that would minimize the speech distortion subject to the 
noise distortion falling below a preset threshold. The 
solution to this constrained minimization problem for 
colored noise is given by [6]: 

H ~ ~ ,  = V - ~ A ( A  + pl)-'vT (1) 

where p is a parameter (typical values for p=5-20), V is an 
eigenvector matrix and A is a diagonal eigenvalue matrix 
obtained from the noisy speech vector (more details can be 
found in [6]). The above equation has the following 
interesting interpretation. The matrix VT acts like a data- 
dependent transform and projects the noisy speech vector 
into the noise and signal subspaces. The diagonal matrix 
A(A +PI)-' multiplies the components of the signal in the 
signal subspace by a gain while zeroing out the components 
of the signal in the noise subspace. Finally, the matrix VPT 
transforms back the projected signal (i.e., it acts like an 
inverse transform). 

The implementation of the above signal subspace 
algorithm can be summarized into two steps. Step 1.  For 
each frame of noisy speech (y), use the above transformation 
given in Eq. 1 to obtain an estimate of the clean signal 
vector 2 ,  i.e., ? =Hop* y. Step 2: Use the estimated signal 
i as input to the CI processor. - 

The above estimator was applied to 4-ms duration frames of 
the noisy signal, which overlapped each other by 50%. The 
enhanced speech vectors were Hamming windowed and 
combined using the overlap and add approach. No voice 
activity detection algorithm was used in our approach to 
update the noise covariance matrix needed to compute the 
matrix V. The noise covariance matrix was estimated using 
speech vectors from the initial silence frames of the 
sentences. 

C. Procedure 
For testing, we used HINT sentences [8] corrupted in +5 dB 
S D I  speech-shaped noise. Six lists (60 sentences) were 
processed off-line in MATLAB by the subspace noise 
reduction algorithm. The sentences were presented directly 
to the subjects via the auxiliary input jack of their CI 
processor at a comfortable listening level. Subjects were 
fitted with their daily strategy. For comparative purposes, 
subjects were also presented with six different lists (60 
sentences) of HINT sentences corrupted in +5 dB speech- 
shaped noise, i.e., unprocessed sentences. The presentation 
order of pre-processed and un-processed sentences was 
randomized between subjects. 

D. Results 
The percent correct scores for all subjects are given in 
Figure 1. The sentences were scored in terms of percentage 
of words identified correctly (all words were scored). The 
mean score obtained using sentences pre-processed by the 
subspace algorithm was 43.8 (SEM=6.2), and the mean 
score obtained using unprocessed sentences was 19 
(SEM=6.6). The sentence scores obtained with the subspace 
algorithm were significantly higher [F( 1,13)=33.1, 
p<0.0005] than the scores obtained with the un-processed 
sentences. As can be seen from Fig. 1, most subjects 
benefited from the noise reduction algorithm. Subject's SS4 
score, for instance, improved from 0% correct to 40% 
correct. Similarly, subjects' SSl and SS2 scores improved 
from nearly 0% to 50% correct. 

The above results indicate that the subspace algorithm 
can provide significant benefits to CI users in sentence 
recognition in noise. It should be noted that the above signal 
subspace algorithm was formulated to minimize speech 
distortion. We therefore believe that this algorithm is more 
suitable for CIS than other conventional algorithms (e.g., 
spectral subtraction and Wiener filtering), which might 
introduce spectral distortion. 

111. EXPERIMENT 2: EVALUATION OF ENVELOPE SUBTRACTION 
ALGORITHM 

In this Experiment, we investigate the performance of a 
noise reduction algorithm, which can be incorporated in 
current CI signal processing strategies. Compared to the 
subspace algorithm presented in Experiment 1,  the proposed 
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envelope subtraction algorithm is much easier to implement 
in real-time. 

Subjects 
I 

Figure 1. Subjects' performance on identification of words in 
sentences embedded in +5 dB S / N  speech-shaped noise and 
preprocessed (dark bars) by the subspace algorithm or left un- 
processed (white bars). Subjects S I 4 9  were Clarion I1 patients and 
subjects SS 1-SS5 were Clarion S-Series patients. 

A .  Subjects 
A total of four Clarion CII implant users participated in this 
experiment. The majority of the users were fitted with the 
CIS strategy. 

B. Envelope subtraction algorithm 
The noisy speech envelope (yl) in the ith band can be 
approximately represented as the sum of the clean speech 
envelope (xl) and the envelope due to noise (n,), i.e., 
y, = x, + nl . The approximation is due to the non-linearity 
of the full-wave rectification typically used in envelope 
detection. If we could somehow estimate the envelope of the 
noise signal (i.e., nJ, then the clean speech envelope could 
be simply estimated by: x, = y, - q . 

The noise envelope (nJ could conceivably be estimated 
(and updated) every time a speech pause is encountered. 
That would require, however, a reliable speechhoke 
detector. Although such a detector might perform well in 
stationary noise environment, it would perform terribly in a 
multi-talker babble listening situation (e.g., in a cafeteria 
environment). In a realistic listening situation the noise 
spectrum will most likely be changing constantly even 
during speech activity. Hence, an algorithm is needed for 
tracking the noise spectrum (or in our case, the noise 
envelope) continuously. Such an algorithm, based on 
minimum statistics [9] is used in this paper. This algorithm 
was modified to accommodate for the signal processing 
involved in CI strategies (note that the algorithm was 
originally developed and applied in the frequency domain). 

The minimum statistics approach [9] is based on the 
observation that the power spectrum of the noisy speech 
signal, even during speech activity, frequently decays to the 
power spectrum level of the additive noise. It is therefore 

possible to derive a relatively accurate estimate of the noise 
spectrum (noise envelope, in our case) by tracking the 
minimum (within a finite window large enough to 
encompass high power speech segments) of the noisy 
speech signal spectrum. 

The minimum tracking is done using the following 
algorithm [IO]. Let S(k,m) denote the smoothed envelope 
amplitude of the mth channel estimated at frame k 
according to the following first-order recursive equation: 

where a (O<a<l) is a smoothing constant, and Y(k,m) is the 
noisy speech envelope amplitude of the mth channel. 
Perform pair wise comparisons between adjacent frames 
(present and previous) to obtain the minimum envelope 
amplitude value of the current frame: 

S,,, ( k ,  m) = min(S,,, ( k  - 1, m), S ( k ,  m)) ( 3 )  
The local minimum is based on a window of at least L 
frames but no more than 2L frames. [Note that in the 
context of cochlear implants, a frame corresponds to one 
cycle of electrical stimulation, and is a function of the 
stimulation rate.] S,,, ( k ,  m) in the above equation 
contains the estimate of tb: envelope of the noise at frame k. 
Figure 2 shows an example of the noise envelope estimation 
for a sentence embedded in +5 dB multi-talker babble. After 
estimating the noise envelope in the mth band, we can 
estimate the clean envelope at frame k by: 

y ( k ,  m) - p ( k ) ~ _ ~  ( k ,  m) 
X ( k ,  m) = 

where p ( k )  is an "overmbtraction" factor [ I  11, which in 

our implementation varied between 1 and 2 depending on 
the estimate of the instantaneous a posteriori SNR. 

The proposed envelope subtraction algorithm can be 
implemented in four steps: Step 1 : Bandpass filter the noisy 
signal into M bands, and extract the envelopes of each band. 
Step 2: Smooth the noisy speech envelopes according to Eq. 
2, and use Eq. 3 to update and estimate the envelope of the 
noise. Step 3: Estimate the clean envelope of the mth band 
using Eq. 4. Step 4: Map the estimated clean envelopes 
X(k,m) to electrical amplitudes using a log type 
compression. 

S(k ,m)  =a S ( k - l , m ) + ( l - a ) Y ( k , m )  (2) 

if y ( k ,  m) > p ( k ) ~ , _  ( k ,  m) 

if Y ( k ,  m) < p(k)Sm ( k ,  m) 

(4) 

i o  

C. Procedure 
The above envelope subtr,action algorithm was implemented 
offline in MATLAB using the following parameters: a=0.8 
in Eq. 2, and L=150 corresponding to 52.1 ms. MATLAB 
routines were written which took as input the CI patients' 
MAP information (e.g., threshold levels, most-comfortable 
levels, pulse width) and generated patient specific amplitude 
files for each sentence processed. Custom software was used 
to "play back" the amplitude files to the implant patients 
using the Clarion Research Interface I1 platform. 

For testing, we used HINT sentences [8] corrupted in +5 
dB S/N multi-talker babble (taken from the AudiTec CD). 
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Three HINT lists (30 sentences) were processed through the 
envelope subtraction algorithm and another set of three lists 
(30 sentences) was processed through a standard 
implementation of the CIS algorithm. The sentences were 
presented directly to the subjects using the Clarion Research 
Interface I1 platform at a comfortable level. 

D. Results 
The individual subject’s performance is shown in Figure 3. 
Overall, there was a substantial variability in performance 
between subjects, with some subjects showing an 
improvement in performance while others showing no 
improvement. Subject S6, for instance, showed a 25% 
improvement in performance with the envelope subtraction 
algorithm compared to the CIS algorithm. Subject S8, on the 
other hand, showed a small decrement in performance. 

Overall, the proposed envelope subtraction algorithm is 
promising in that it may provide benefit to some subjects. 
Further work needs to be done, however, to find out why 
some subjects did not perform well with the envelope 
subtraction algorithm. We suspect that this might be due to 
inaccurate estimates of the noise envelope, which in turn, 
might have produced (envelope) distortion. More accurate 
noise envelope estimation algorithms might be required to 
minimize the possibility of any type of distortion. Further 
improvements to the noise envelope estimation are currently 
being investigated. 

1 
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Figure 2. Example of noise envelope estimation for channel 1 
(350-421 Hz). The thick line shows the estimate of the noise 
envelope for channel 1 and the thin line shows the smoothed noisy 
speech envelope estimated according to Eq. 2. 

Iv. DISCUSSION AND CONCLUSIONS 

Two noise reduction algorithms (subspace and envelope 
subtraction) for cochlear implants were presented in this 
paper. Of the two algorithms, the subspace algorithm 
produced significant improvements in sentence recognition 
in noise for the 14 Clarion implant users tested. Small 
improvements in sentence recognition scores were also 
produced with the envelope subtraction algorithm at least 
for two out of the four subjects tested. The largest 

improvements in performance obtained by the subspace 
algorithm can be attributed to the fact that it was formulated 
to minimize speech distortion (a common artifact of 
conventional noise reduction algorithms). Envelope 
distortion might be the reason that the envelope subtraction 
algorithm did not perform as well as the subspace algorithm. 
Further work needs to be done on the envelope subtraction 
algorithm to obtain more accurate estimates of the noise 
envelope. 
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Subjects 

Figure 3. Subjects’ performance on identification of words in 
sentences embedded in +5 dB S/N multi-talker babble and 
processed by the envelope-subtraction (ESUB) algorithm (dark 
bars) or left un-processed (white bars). 
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