A Portable Research Platform for Cochlear Implants

Arthur P. Lobo, Philip C. Loizou, Nasser Kehtarnavaz, Murat Torlak, Hoi Lee, Anu Sharma, Phillip Gilley, Venkat Peddigari, Lakshmith Ramanna

University of Texas at Dallas

[arthur.lobo,loizou]@utdallas.edu, http://www.utdallas.edu/~loizou/cimplants

Introduction

- Having access to a flexible research platform is critical for the advancement of cochlear implants or neural interface devices in general.
- Aims of a recent contract from NIDCD/NIH are to develop a research processor that is:
 - Portable - to allow for realistic assessment of new algorithms after long-term use
 - Flexible - to allow for quick development and evaluation of new research ideas
 - Easy to use - accessible to all researchers interested in critical and animal studies
- To achieve the above aims, we sought for a research platform which requires minimal investment in hardware development.

Research processors: Then …

Existing research processors: Now

Project Overview

PDA hardware capabilities

- Capabilities suitable for several interfaces:
 - Input ports (single & multiple channel) suited for multi-channel recordings
 - Output ports suitable for sending data for stimulation
 - Wireless connectivity
 - Graphical user interfaces for patient control (e.g., via input)
 - Portability for chronic studies
 - Powerful computing capability

Patient controls and interface

Cochlear Implant Research Interface

Real-time implementation on the PDA using LabVIEW

- 16-channel CIS implementation runs in real-time on the PDA
- Used Intel’s IPP routines optimized for PXA270
- Digital signal processing library for CIs (ongoing)

Work done so far

1. Implemented a 16-channel CIS and ACE strategies in real-time on the PDA
 - Used Intel’s IPP routines optimized for PXA270
 - Digital signal processing library for CIs (ongoing)

2. Implemented a 16-channel noise vocoder in real-time on the PDA (audio demo)
 - Useful for studies investigating learning effects following changes to processor (e.g., frequency maps)

3. Implemented a 16-channel noise vocoder in real-time on the PC using LabVIEW

4. PDA stimulation of the Freedom implant via Secure Digital IO interface (see demo)

Evoked Potentials

Evoked Potentials Set Up

- 1. headstage or pre-amplifiers
- 2. amplifier unit
- 3a. trigger pulse connection
- 3b. presentation of electrical stimuli
- 4. presentation of electrical stimuli

- Easy and flexible to program
- Critical for the advancement of cochlear implants or neural interface devices in general.

- Aims of a recent contract from NIDCD/NIH are to develop a research processor that is:
 - Portable – to allow for realistic assessment of new algorithms after long-term use
 - Flexible – to allow for quick development and evaluation of new research ideas
 - Easy to use – accessible to all researchers interested in critical and animal studies

- To achieve the above aims, we sought for a research platform which requires minimal investment in hardware development.

- The PDAs can provide for a portable, flexible and easy-to-use research platform for cochlear implant research.
- The PDAs can possibly be used in other neural prostheses.
- Other applications will require a different input and a perhaps different output neural interface.
- In retinal implants, for instance, the input will come from a small camera rather than a microphone.

Summary

Research supported by NIDCD/NIH