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The application of the ideal binary mask to an auditory mixture has been shown to yield substantial
improvements in intelligibility. This mask is commonly applied to the time—frequency (T-F)
representation of a mixture signal and eliminates portions of a signal below a signal-to-noise-ratio
(SNR) threshold while allowing others to pass through intact. The factors influencing intelligibility
of ideal binary-masked speech are not well understood and are examined in the present study.
Specifically, the effects of the local SNR threshold, input SNR level, masker type, and errors
introduced in estimating the ideal mask are examined. Consistent with previous studies,
intelligibility of binary-masked stimuli is quite high even at —10 dB SNR for all maskers tested.
Performance was affected the most when the masker dominated 7 F units were wrongly labeled as
target-dominated 7—F units. Performance plateaued near 100% correct for SNR thresholds ranging
from —20 to 5 dB. The existence of the plateau region suggests that it is the pattern of the ideal
binary mask that matters the most rather than the local SNR of each T—F unit. This pattern directs
the listener’s attention to where the target is and enables them to segregate speech effectively in

multitalker environments. © 2008 Acoustical Society of America. [DOI: 10.1121/1.2832617]

PACS number(s): 43.71.Es, 43.71.Gv [MSS]

I. INTRODUCTION

Human listeners are able to understand speech even
when it is masked by one or more competing voices. The
speech segregation process is often approximated at the basic
level by two distinct stages. In the first stage, the auditory
periphery decomposes the auditory mixture to an array of
individual time-and-frequency (T—F) units, with each unit
representing the acoustic signal occurring at a particular in-
stance in time and frequency, and with the size (e.g., band-
width and duration) of each unit representing the smallest
auditory event that can be resolved. The listener is able to
reliably detect the acoustic energy of the target voice in 7—F
regions, wherein the target is at least as strong as the masker.
In the second stage, the listener examines all 7—F units in
the mixture and uses a priori information about the target
signal as well as a multitude of other cues to segregate the
T—F units of the target and integrate (or somehow group) all
these units into a single auditory image of the target signal.
Cues such as common periodicity across frequency, common
offsets and onsets, amplitude and frequency modulations, are
believed to be involved and used by human listeners in the
previous auditory scene analysis (Bregman, 1990).

Several computational auditory scene analysis (CASA)
techniques were proposed in the literature modeling the pre-
vious two-stage segregation process (Wang and Brown,
2006). The goal of CASA techniques was to segregate only
the target signal, rather than all interfering sources, from the
sound mixtures, and the means suggested for achieving this
goal was the ideal T—F binary mask (Wang, 2005). The ideal
binary “mask” takes values of zero and one, and is con-
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structed by comparing the local signal-to-noise ratio (SNR)
in each T—F unit against a threshold (e.g., 0 dB). The ideal
mask is commonly applied to the 7—F representation of a
mixture signal and eliminates portions of a signal (those as-
signed to a “zero” value) while allowing others (those as-
signed to a “one” value) to pass through intact.

A recent study (Brungart et al., 2006) demonstrated the
potential of using ideal binary masks for improving the in-
telligibility of speech masked by one or more interfering
voices. A number of other studies (Roman et al., 2003; Ro-
man and Wang, 2006; Cooke, 2006; Brungart et al., 2006;
Anzalone et al., 2006) have shown that speech synthesized
from the ideal binary mask is highly intelligible even when
extracted from multisource mixtures (Roman et al., 2003) or
in reverberant conditions (Roman and Wang, 2006). Ideal
masks that are not binary but take real values have also been
found to improve speech intelligibility (Li and Loizou,
2007). Roman et al. (2003) assessed the performance of an
algorithm that used location cues and an ideal time—
frequency binary mask to synthesize speech. Large improve-
ments in intelligibility were obtained from partial spec-
trotemporal information extracted from the ideal time-
frequency mask. Similar findings were also reported by
Brungart et al. (2006), for a range of SNR thresholds (from
—12 to 0 dB) used for constructing the ideal binary mask. A
different method for constructing the ideal binary mask was
used by Anzalone er al. (2006) based on comparisons of the
speech energy detected in various bands against a preset
threshold. The threshold value was chosen such that a fixed
percentage (99%) of the total energy contained in the entire
stimulus was above this threshold. Results with the ideal
speech energy detector indicated significant reductions in
speech reception thresholds for both normal-hearing and
hearing-impaired listeners. Cooke (2006) used a computa-
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tional model of glimpsing along with behavioral data col-
lected from normal-hearing listeners on a consonant identifi-
cation task. Close fits to listener’s performance on a
consonant task were obtained with local SNR thresholds in
the range from -2 to 8 dB.

It is clear from the above-mentioned studies that the
application of ideal binary masks is critically important for
improving intelligibility of speech corrupted by interfering
voices (or other types of maskers) by both normal-hearing
and hearing-impaired listeners. In general, the study of ideal
binary masks is important because it can be used for model-
ing the human auditory scene analysis process (Wang, 1996;
Cooke, 2006), for evaluating the relative contributions of
informational and energetic masking to overall perception of
auditory mixtures (Brungart et al., 2006), for improving the
accuracy of automatic speech recognition systems (Cooke et
al., 1994, 2001; Srinivasan et al., 2006) and for elucidating
neurophysiological mechanisms underlying auditory scene
analysis (McCabe and Denham, 1997; Alain, 2005).

In many of the previous studies, it is assumed that an
ideal binary mask is available. In a practical system, the bi-
nary mask needs to be estimated from the noisy data, and
that is a challenging task, particularly in adverse noisy con-
ditions. As it is practically impossible to compute accurately
the ideal binary mask for all 7—F units, it is of interest to
assess the effect of estimation errors on speech intelligibility.
At issue is how accurate do we need to estimate the binary
mask without compromising speech intelligibility. No studies
have yet addressed that question. Other factors that may in-
fluence intelligibility of speech synthesized by the ideal (or
estimated) binary mask include the choice of the local SNR
threshold(s), the masker type (modulated versus steady
state), speech materials, and input global SNR level. The
effect of the local SNR threshold on speech intelligibility
(and to some extent the masker type) was assessed in the
study by Brungart e al. (2006) using the coordinate response
measure (CRM) corpus (Bolia er al., 2000) as test material.
The CRM test, however, is a closed-set test which is re-
stricted to four phonetically distinct color alternatives and
eight phonetically distinct number alternatives, both of
which are easy to understand even in extremely noisy envi-
ronments (Brungart er al., 2001a, b). It is not known whether
the intelligibility benefit seen in Brungart et al. (2006) car-
ries through to other more challenging speech materials us-
ing the same range of SNR thresholds and input SNR levels.
In the present study, we assess the intelligibility of ideal
binary-masked speech using IEEE sentences as test material
and speech-shaped noise or competing voices as maskers.

Il. EXPERIMENT 1: EFFECTS OF SNR THRESHOLD
AND INPUT SNR LEVEL

A. Methods
1. Subjects

Seven normal-hearing listeners participated in this ex-
periment. All subjects were native speakers of American En-
glish, and were paid for their participation. The subjects’ age
ranged from 18 to 40 yrs, with the majority being under-
graduate students from the University of Texas at Dallas.
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2. Stimuli

The speech material consisted of sentences taken from
the IEEE database (1969). All sentences were produced by a
male speaker. The sentences were recorded in a sound-proof
booth (Acoustic Systems) in our lab at a 25-kHz sampling
rate. Details about the recording setup and copies of the re-
cordings are available in Loizou (2007). The sentences were
corrupted by a 20-talker babble (Auditec CD, St. Louis) at
-5 and -10 dB SNR. These SNR levels were chosen to
avoid floor effects. The babble interferer started at 100 ms
before the beginning of each sentence and stopped at least
100 ms after the end of the sentence. The same babble seg-
ment was used for all sentences. The effect of using different
types of maskers is investigated in Experiment 2.

3. Signal processing

The processing involved in the synthesis of ideal binary-
masked (IdBM) stimuli made use of three signals: the target
signal (prior to mixing), the masker (or interfering) signal
and the resulting mixture. Each of these signals was first
processed using a fast Fourier transform (FFT) applied to
20-ms segments of the signal (Hamming windowed) with
50% overlap between segments. A bank of 128 gammatone
filters, with auditory-like frequency resolution, was used in
Brungart et al. (2006) in place of the FFT. Following the
earlier 7—F decomposition, a comparison is made between
the energy of the target and that of the masker. The resulting
local SNR of each T—F unit is compared against a preset
threshold value 7T to determine whether to retain the 7—F
unit (binary mask value is 1) or to eliminate it (binary mask
value is 0). The computed pattern of binary mask values,
consisting of 0’s and 1’s, is applied to the FFT magnitude
spectrum of the mixture signal. The inverse FFT is finally
applied to the modified magnitude spectrum to synthesize the
IdBM stimuli. The phases of the mixture FFT spectra were
used in the inverse FFT. Stimuli are synthesized in each
20-ms segment using the overlap-and-add method.

In the present experiment, we varied the local SNR
threshold value 7 from —40 to +15 dB in steps of 5 and
10 dB, and assessed performance for each value of 7. When
the SNR threshold value is set to 0 dB, for instance, only
target 7—F units that have larger energy than the masker are
kept, and the remaining units are zeroed out. Figure 1 illus-
trates the IdBM processing for two different values of SNR
threshold (=10 and 0 dB) for a mixture embedded in multi-
talker babble at —5 dB SNR (measured from the rms energy
of the utterance). The middle panels show the ideal binary
masks, with white indicating a 1 and black indicating a 0.
The bottom panels show the segregated mixtures. As can be
seen from Fig. 1, the smaller the value of the SNR threshold
is, the larger the number of 7—F units retained, and in prin-
ciple the original mixture corresponds to an SNR threshold
value of —o. At the other extreme, increasing the SNR
threshold reduces the total number of 7—F units retained.
The question addressed in this experiment, is what range of
SNR thresholds is optimal in terms of obtaining the highest
levels of speech intelligibility.
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FIG. 1. Top row shows the spectrogram of a sentence in
quiet from the IEEE corpus. The second row (from top)
shows the spectrograms of the sentence embedded in
multitalker babble at —5 dB SNR. The second row
(from bottom) shows the ideal binary mask obtained
using an SNR threshold of —10 dB (left) and 0 dB
(right), with white pixels indicating a 1 (target stronger
than the masker) and black pixels indicating a 0 (target
weaker than the masker). Bottom row shows the segre-
gated mixtures obtained with SNR thresholds of
—10 dB (left) and 0 dB (right).
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4. Procedure

The experiments were performed in a sound-proof room
(Acoustic Systems, Inc) using a PC connected to a Tucker-
Davis system 3. Stimuli were played to the listeners monau-
rally through Sennheiser HD 250 Linear II circumaural head-
phones at a comfortable listening level. Prior to the test, each
subject listened to a set of noisy sentences to familiarize
them with the testing procedure. During the test, the subjects
were asked to write down the words they heard. Subjects
participated in a total of 18 conditions (=2 SNR levels X8
SNR thresholds +2 conditions involving the unprocessed
mixtures). Two lists of sentences (i.e., 20 sentences) were
used per condition, and none of the lists were repeated across
conditions. Sentences were presented to the listeners in
blocks, with 20 sentences/block in each condition. The order
of the test conditions was randomized across subjects.

B. Results and discussion

The mean scores for all conditions are shown in Fig. 2.
Performance was measured in terms of percent of words
identified correctly (all words were scored). Two-way analy-
sis of variance (ANOVA) (with repeated measures) indicated
a significant effect of local SNR threshold value (F[7,42]
=398.5, p<0.0005), a significant effect of input SNR level
(F[1,6]=267.0, p<<0.0005), and a significant interaction
(F[7,42]=30.6, p<0.0005).

Overall, the general pattern of performance is similar to
that obtained by Brungart ef al. (2006) with the CRM corpus.
Significant gains in intelligibility are obtained with the [IBM
processed speech for a range of SNR threshold values. Intel-
ligibility of the —10 dB mixture improved from near 0% cor-
rect (unprocessed) to near 100% correct when processed us-
ing the ideal binary mask. Similarly, the intelligibility of the
-5 dB mixture improved from 24% (unprocessed) to near
100%. The range of threshold values for which performance
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plateaued (near 100% correct) is slightly wider for mixtures
at =5 dB SNR than for mixtures at —10 dB SNR. Protected
post-hoc tests (Fisher’s LSD) were run to determine the pla-
teau region for each SNR level. Analysis indicated that the
plateau region for mixtures in —5 dB SNR ranged from
—20 to 5 dB, whereas the plateau region for mixtures in
—10 dB SNR ranged from -20 to O dB. Brungart et al.
(2006) reported a smaller region, —12 to 0 dB, however they
used different test speech materials (CRM corpus) which
lacked contextual cues.

Performance degraded markedly with IdBM stimuli for
values of T smaller than —30 dB. We attribute this to the
listeners being confused as to which 7—F units belonged to
the target and which units belonged to the masker. Interest-
ingly enough, the ability of the listeners to segregate the
target was not impaired at all when very strong masker units
(by 20 dB) were included in the IdBM stimuli, i.e., with T
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FIG. 2. Performance (percent of words identified correctly) as a function of
SNR threshold (dB) for two input global SNR levels. The masker was 20-
talker babble. Performance obtained with unprocessed mixtures is indicated
as UN. Error bars indicate standard errors of the mean.
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=-20 dB. Auditory masking effects, access to contextual
cues and the overall pattern of the binary mask (in terms of
location of masker units relative to the target units) could
have contributed to that (see discussion in later section). Per-
formance with T=-40 dB was not statistically different (p
>0.05) from that attained with the unprocessed mixtures for
both SNR levels.

Performance of the processed mixtures at —10 dB SNR
dropped precipitously for positive values of 7. This can be
attributed to the fact that as the input SNR level of the mix-
ture decreases, the number of 7—F units retained also de-
crease. In fact, for every 1 dB increase in T (T>0 dB), we
observe a decrement in performance equivalent to that ob-
tained when the input SNR level decreases by 1 dB and the
value of T remains unchanged. This means that each 1 dB
increase in T eliminates exactly the same 7T—F units that
would have been eliminated if 7 remained unchanged but the
input SNR decreased by 1 dB. This can be seen in Fig. 2.
Performance of IdBM stimuli obtained for mixtures at =5 dB
SNR dropped from near 100% to 80% correct when T in-
creased from 5 to 10 dB. Note that the same level of perfor-
mance was obtained when the SNR of the mixtures de-
creased by 5 dB for the same value of T (T=5 dB). This
outcome is consistent with that observed in Brungart et al.
(2006) and has important implications in terms of assessing
the energetic and informational components of speech-on-
speech masking (see discussion in later section).

lll. EXPERIMENT 2: EFFECT OF MASKER TYPE ON
SPEECH INTELLIGIBILITY

In the previous experiment, we assessed performance
using a single type of masker (20-talker babble). Acknowl-
edging that performance might be affected by the use of
different types of maskers, we examine in this experiment
the performance of IdBM stimuli using modulated noise,
steady-state noise and 2-talker maskers. This experiment will
tell us whether the IdBM technique is more effective when
the masking has both informational and energetic compo-
nents, as that introduced by competing voices, or when the
masking is purely energetic, as that introduced by steady-
state noise.

A. Methods
1. Subjects and material

Seven new normal-hearing listeners participated in this
experiment. All subjects were native speakers of American
English, and were paid for their participation. Same speech
material (IEEE, 1969) was used as in experiment 1.

2. Signal processing

Same signal processing technique was used as described
in experiment 1. Three types of maskers were used. The first
was continuous (steady-state) noise, henceforth referred to as
SSN noise, which had the same long-term spectrum as the
test sentences in the IEEE corpus. The second was two
equal-level interfering talkers (female) based on two of the
longest sentences in the corpus (this was done to ensure that
all target sentences were shorter than the interferers). The
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FIG. 3. Performance (percent of words identified correctly) as a function of
SNR threshold (dB) for three types of maskers: modulated speech-shaped
noise (MSSN), steady-state speech-shaped (SSN) noise and 2-talker masker.
Performance obtained with unprocessed mixtures (at —5 dB SNR) is indi-
cated as UN. Error bars indicate standard errors of the mean.

third masker was a speech-shaped noise masker that was
modulated to match the overall envelope of the IEEE sen-
tences used for the 2-talker masker. We refer to the modu-
lated speech-shaped noise as MSSN. The MSSN noise was
constructed by modulating speech-shaped noise with the
waveform envelope of the 2-talker masker. The envelope
was extracted using a method similar to that described by
Festen and Plomp (1990) by full-wave rectifying the speech
masker and low-pass filtering (40-Hz cutoff) the rectified
signal. The sentences were corrupted by the three types of
maskers at =5 dB SNR.

3. Procedure

The procedure was identical to that used in experiment
1. Subjects participated in a total of 27 conditions (=3
maskers X8 SNR thresholds +3 conditions involving un-
processed mixtures). The SNR thresholds tested were the
same as in Experiment 1, except for the addition of the T
=25 dB condition and the elimination of the 7=-10 dB con-
dition. The latter condition was eliminated as it yielded
(based on pilot data) the same performance as the T=
—20 dB condition. Due to the large number of conditions
involved, subjects performed the listening tests in two inde-
pendent sessions on different days, with each session lasting
approximately 2.5 to 3 h. Subjects were given 5 min breaks
every 30 min of testing. Two lists of sentences (i.e., 20 sen-
tences) were used per condition, and none of the lists were
repeated across conditions. The order of the test conditions
was randomized across subjects.

B. Results and discussion

The mean scores for all conditions are shown in Fig. 3.
Performance was measured in terms of percent of words
identified correctly (all words were scored). Two-way
ANOVA (with repeated measures) indicated a significant
effect of local SNR threshold value (F[7,42]=499.2,
p<0.0005), a significant effect of masker type (F[2,12]
=1147, p<0.0005), and a significant interaction
(F[14,84]=40.1, p<0.0005).
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The range of threshold values for which performance
plateaued near 100% correct was similar for the three types
of maskers. Protected post-hoc tests (Fisher’s LSD) were run
to determine the plateau region for each masker. For the SSN
masker it ranged from —30 to +5 dB, for the MSSN masker
it ranged from —20 to +5 dB and for the 2-talker masker it
ranged from -20 to +10 dB.

Performance obtained with the three different types of
maskers was very similar for negative values of 7. Scores
obtained with IdBM stimuli using T=—40 dB were not sta-
tistically different (p>0.05) from the scores obtained with
the unprocessed mixtures for all three types of maskers. The
difference in performance with the three types of maskers
was more evident for positive values of 7. Scores dropped
significantly with the SSN masker when 7>5 dB. The per-
formance drop seen with the two modulated maskers (modu-
lated noise and 2-talker masker) was also significant but
more gradual. This outcome clearly illustrates the intelligi-
bility benefit obtained when listening “in the gaps” of a fluc-
tuating masker (Festen and Plomp, 1990). These gaps have
presumably more favorable SNR which listeners exploit to
hear out the target signal.

As demonstrated in the previous Experiment, the perfor-
mance obtained with increasing T by say +L dB is equivalent
to that obtained by decreasing the input SNR by L dB at a
fixed value of T (Brungart et al., 2006). Making use of this
approximation and after comparing the performance ob-
tained with unprocessed mixtures with that obtained with
positive values of 7, we can conclude that the intelligibility
improvement (in terms of SNR benefit) brought by the IdIBM
technique for SSN maskers is about 7 dB. Similarly, the im-
provement for MSSN maskers is 10 dB and for 2-talker
maskers is near 15 dB. Thus it seems that the IdBM tech-
nique is more effective, in terms of improving intelligibility,
when the target speech is masked by speech than when it is
masked by noise. This outcome is consistent with that ob-
served by Brungart ef al., (2006). The improvement brought
by the IdBM technique for speech masked by noise is
smaller (compared to the speech maskers), nevertheless it is
quite significant, about 50 percentage points (Fig. 3).

IV. EXPERIMENT 3: EFFECT OF OVERALL BINARY
MASK ERROR

In the previous experiments, we assumed that we had
access to the ideal binary mask. In practice, however, the
binary mask needs to be estimated from the mixtures. Algo-
rithms (e.g., Hu and Wang, 2004) can be used in practice to
estimate the SNR of each 7—F unit and subsequently the
binary mask pattern. Such algorithms will possibly make er-
rors in labeling each T—F unit to O or 1, as we lack access to
the masker signal. In the present experiment, we assess the
effect of overall binary mask error on speech intelligibility.
At issue is how accurate do algorithms need to be in estimat-
ing the binary mask without compromising the intelligibility
brought by the IdBM technique.
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A. Methods
1. Subjects and material

Seven new normal-hearing listeners participated in this
experiment. All subjects were native speakers of American
English, and were paid for their participation. The same
speech material (IEEE, 1969) was used as in Experiment 1.

2. Signal processing

The ideal binary mask is first computed as in Experi-
ment 1 with the use of the FFT operating on 20-ms segments
of the signals (target, masker, and mixture). To create stimuli
with varying degrees of binary mask error, we randomly se-
lected a fixed percentage of 7—F units in each 20-ms frame
and flipped the corresponding values of the ideal binary
mask from O to 1 or from 1 to 0. We varied the percentage of
binary mask error introduced in each 20-ms frame from 5%
to 40%. More precisely, we tested the following amounts of
error (in terms of percentage of T—F units in each 20-ms
frame): 5%, 10%, 20%, 30%, and 40%. The 5%-error con-
dition, for instance, had 5% of the 7—-F units marked
wrongly (i.e., 0 was labeled as 1 and vice versa) and the
remaining 95% of the T—F units marked correctly (i.e., ideal
binary mask was used) in each 20-ms frame. The new binary
mask pattern containing fixed amounts of error in each frame
was used to synthesize the stimuli using the same method
described in Experiment 1.

To assess the effect of overall binary mask error on vari-
ous maskers, we applied the previous technique to mixtures
corrupted by three different types of masker: steady-state
speech-shaped noise, 2-talker masker and 20-talker babble
(same as in experiment 1). The former two maskers were the
same as in Experiment 2.

3. Procedure

The procedure was identical to that used in experiment
1. Subjects participated in a total of 18 conditions (=3
maskers X35 error values +3 conditions involving unproc-
essed mixtures). Two lists of sentences (i.e., 20 sentences)
were used per condition, and none of the lists were repeated
across conditions. The order of the test conditions was ran-
domized across subjects.

B. Results and discussion

The mean scores for all conditions are shown in Fig. 4.
Performance was measured in terms of percent of words
identified correctly (all words were scored). Performance ob-
tained with the unprocessed mixtures is shown to the right
(marked as “UN”) for comparison. Two-way ANOVA (with
repeated measures) indicated a significant effect of masker
type (F[2,12]=7.1, p=0.009), a significant effect of binary
mask error (F[4,24]=432.3, p<0.0005), and a nonsignifi-
cant interaction (F[8,48]=0.5, p=0.791).

The pattern of performance was similar for all three
maskers. Scores remained high (near 100% correct) when the
binary mask error was less or equal to 10%, and dropped
relatively fast thereafter. In fact, for every 10% error intro-
duced, performance dropped roughly by 20 percentage
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FIG. 4. Performance (percent of words identified correctly) as a function of
the overall percentage of binary mask error introduced for three types of
maskers: steady-state speech-shaped (SSN) noise, 2-talker masker, and 20-
talker masker. Performance obtained with unprocessed mixtures (at —5 dB
SNR) is indicated as UN. Error bars indicate standard errors of the mean.
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points for both modulated and non-modulated maskers.
Overall, there seems to be a strong (and negative) correlation
between the amount of error introduced in the binary mask
pattern and the intelligibility scores attained. In fact, the
computed correlation coefficient between the binary mask
error (percentage) and intelligibility score for the 15 condi-
tions tested was quite high, p=—0.98 (p <0.005). We should
acknowledge, however, that this correlation was computed
using the IdBM stimuli from which we can compute the
overall error.

Regarding the question posed in this experiment as to
how accurate do binary-mask estimation algorithms need to
be, we observe from Fig. 4 that the answer depends on the
type of masker and the set expectations. If the goal is to
restore speech intelligibility (to the level attained in quiet),
then the algorithm needs to produce at most 10% error when
estimating the binary mask. This applies for all three types of
maskers tested. If the goal is to improve speech intelligibility
relative to that of the unprocessed mixtures, then different
amounts of error can be tolerated depending on the type of
masker. For the 20-talker masker, the overall error needs to
be less than (or equal to) 30%, whereas for the 2-talker
masker and steady-state noise, the error needs to be less than
(or equal to) 20%.

V. EXPERIMENT 4: EFFECT OF TYPE OF BINARY
MASK ERROR

In the previous experiment, we assessed the effect of the
overall error in the binary mask pattern making no distinc-
tion between the two types of error that can occur. The first
type of error occurs when a T—F unit that was originally
labeled as O (i.e., local SNR of T—F unit is less than thresh-
old T) is purposefully modified to 1. The second type of error
occurs when a T—F unit that was originally labeled as 1 (i.e.,
local SNR of T—F unit is greater than threshold 7) is pur-
posefully modified to 0. From signal detection theory, we can
say that the first type of error is similar to type I error (false
alarm) and the second type of error is similar to type II error’
(miss). Hence, for the purpose of discussion, we will refer to
these two errors as type I and type II errors. The type I error
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will possibly introduce more noise distortion or more target-
masker confusion, as 7—F units that would otherwise be
zeroed-out (presumably belonging to the masker or domi-
nated by the masker) would now be retained. The type II
error will likely introduce target speech distortion, as it will
zero out T—F units that are dominated by the target signal
and should therefore be retained. The perceptual effect of
these two types of errors introduced in the binary masking
pattern is likely different, and this is assessed in the present
experiment.

A. Methods
1. Subjects and material

The same subjects used in experiment 3 participated in
this experiment on a different day. Same speech material
(IEEE, 1969) was used as in Experiment 1. None of the
sentence lists was repeated.

2. Signal processing

The ideal binary mask is first computed as in experiment
1 with the use of the FFT operating on 20-ms segments of
the signals (target, masker and mixture). To create stimuli
with varying degrees of type I and type II binary mask errors,
we followed a procedure similar to that in experiment 3. As
we wanted to assess independently the effect of type I and II
errors, we kept for the type-II stimuli all 7—F units originally
labeled as 0 (according to the ideal binary mask) and intro-
duced varying degrees of error only to units originally la-
beled as 1. Hence, we created type-II stimuli by introducing
a fixed percentage of errors only to the 7—F units labeled as
1 (according to the ideal binary mask). No errors were intro-
duced to the T—F units originally labeled as 0. Similarly, we
created type-I stimuli by introducing a fixed percentage of
errors only to the 7—F units labeled as 0. No errors were
introduced to the 7—F units originally labeled as 1. We var-
ied the percentage of type I/II errors introduced to the T—F
units in each 20-ms frame, from 20% to 95%. More specifi-
cally we tested the following amounts of error (in percentage
of T—F units available in each frame): 20%, 40%, 60%,
70%, 80%, 85%, 90%, and 95%. In the 20% type-II error
condition, for instance, 20% of the T—F units in each 20-ms
frame that were originally marked as 1 were flipped to 0,
whereas the remaining units were kept intact. That is, no
errors were introduced to the 7—F units originally labeled as
0. The new binary mask pattern containing fixed amounts of
type I/1I error was applied to the mixtures. The same method
described in experiment 1 was used to synthesize the stimuli.

Given the limited number of lists available in the IEEE
corpus, we applied the above technique only to mixtures em-
bedded in 20-talker babble at —5 dB SNR. As the local SNR
threshold of 7=0 dB was found to be quite effective in the
previous experiments for all types of maskers and SNR lev-
els, we assessed the effect of type I and II errors using T
=0 dB.

3. Procedure

The procedure was identical to that used in experiment
1. Subjects participated in a total of 17 conditions (=2 types
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of error X 8 error values+ 1 condition involving unprocessed
mixtures). Two lists of sentences (i.e., 20 sentences) were
used per condition, and none of the lists were repeated across
conditions. The order of the test conditions was randomized
across subjects.

B. Results and discussion

The mean scores for all conditions are shown in Fig. 5.
Performance was measured in terms of percent of words
identified correctly (all words were scored). Performance ob-
tained with the unprocessed mixtures is shown to the right
(marked as UN) for comparison. Two-way ANOVA (with
repeated measures) indicated a significant effect of the type
of error (F[1,6]=163.7, p<0.0005), a significant effect of
the amount of error (F[7,42]=242.2, p<0.0005), and a sig-
nificant interaction (F[7,42]=44.2, p<0.0005).

It is clear from Fig. 5 that the type of error introduced in
the binary mask pattern affected performance differently and
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to a different extent. There was a gradual degradation in
performance when type II errors were introduced. Perfor-
mance remained high (near 100% correct) even when 60% of
the T—F units originally labeled as 1 were purposefully
switched to 0 (assuming no errors were introduced in the
T—F units originally labeled as 0). Post-hoc tests (Fisher’s
LSD) indicated that performance obtained with 60% type-II
error was not statistically different (p=0.377) from perfor-
mance obtained with 20% error. As one would expect, per-
formance dropped substantially when the error exceeded
80%, as the overwhelming majority of the target-dominated
T—F units were eliminated.

In stark contrast, the type I error affected performance
dramatically, even when small amounts (20%) of error were
introduced. Performance dropped from nearly 100% correct
obtained with the ideal binary mask (0% error, Fig. 2) to
80% correct with 20% error. Note that with this type of error,
all T—F units originally labeled as 1 remained intact, i.e., no
errors were introduced in the target-dominated 7—F units.
We attribute the dramatic decrease in performance with type
I errors to the following two reasons. First, the number of
T—F units labeled by the ideal binary mask as 0 (i.e., with
local SNR<0 dB) is substantially larger than the corre-
sponding number of T—F units labeled as 1 (i.e., with local
SNR >0 dB). Consequently, a larger number of T—F units
are wrongly labeled when type I error is introduced in the
binary masking pattern than when type II is introduced de-
spite the fact that percentage of error is the same for the two
types of error. To corroborate this observation, we plot in
Fig. 6 the histogram of the percentage of T—F units in each
frame that have local SNR threshold greater or smaller than
0 dB (input mixture was corrupted by 20-talker babble at
—5 dB SNR). Based on the histogram average (Fig. 6), 80%
of the T—F units in each 20-ms frame are labeled 0 (i.e.,
local SNR<0 dB) and the remaining 20% are labeled as 1
(i.e., local SNR>0 dB). Hence, the overwhelming majority
of the T—F units are labeled as 0. The second reason for the

FIG. 6. (Color online) Histograms of the percentage of
T—F units in each 20-ms frame falling below the SNR
threshold (0 dB) and above the SNR threshold. The
mixture was corrupted at —5 dB SNR in 20-talker
babble. The histogram was computed using all 720 sen-
tences in the IEEE corpus and was based on a total of
190 386 frames.

90 100
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dramatic decrease in performance with type I errors is that it
increases the target-masker confusions. For the masker (com-
peting voices) used in this experiment, type I errors increase
the amount of informational masking. As more 7—F units are
introduced with large and negative local SNRs, listeners
have greater difficulty distinguishing the target voice from
the interfering voices.

Figure 5 superimposes the performance obtained with
the unprocessed mixtures. Analysis (paired samples t-tests)
indicated that in order to obtain significant (p<<0.005) im-
provement in speech intelligibility, the type I and II errors
need to be lower than 85%. There is no statistically signifi-
cant (p>0.05) difference between the performance obtained
with unprocessed mixtures and that obtained with 90% type
I or type II error. These results are interesting as they provide
insights as to the amounts of type I or II “errors” typically
present in unprocessed mixtures at —5 dB SNR. They also
provide performance bounds on algorithms that can poten-
tially be used to estimate the ideal binary mask. In the con-
text of such algorithms, it is clear from Fig. 5 that it is more
important to find techniques to keep the type I error low than
keep the type II error low, although understandably a balance
needs to be struck between the magnitude of the two errors.
The consequences of type I error are counterintuitive as one
would expect that it is more important to ensure that all
target-dominated 7—F units are labeled correctly rather than
ensuring that all masker-dominated 7-F units are labeled
correctly. That is not the case, however, as can be seen from
Fig. 5 by contrasting the performance obtained with type I
and II errors for the same percentage of error. Taking the
60% error as an example, we see that performance dropped
to 50% correct when type I error was introduced despite the
fact that all target-dominated units were classified correctly.
In contrast, when type II error was introduced with all
masker-dominated units classified correctly, there was no no-
ticeable decrease in performance (remained near 100% cor-
rect).

VL. DISCUSSION AND CONCLUSIONS

The outcomes in experiments 1 and 2 have important
implications for understanding speech segregation in multi-
talker environments. Equally important are the implications
of experiments 3 and 4 for designing algorithms capable of
estimating the ideal binary mask with the intent of suppress-
ing interfering noise or competing voices for improved
speech intelligibility.

A. Speech segregation

The present study replicated and extended the findings
of the study by Brungart et al. (2006). There are a number of
similarities and a number of differences between the out-
comes of the two studies. The overall pattern of performance
was very similar in the two studies. Performance reached a
plateau (near 100% correct) in the region near 0 dB SNR
threshold and dropped for large and small values of the local
SNR threshold. This pattern was observed for all types of
maskers tested whether be modulated or steady-state. The
application of the IdBM technique is more effective, in terms
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of intelligibility improvement, when speech is masked by
speech (largely informational masking with some energetic
masking) than when it is masked by steady-state noise
(purely energetic masking). Experiment 1 confirmed the ap-
proximation that each 1 dB increase in the SNR threshold
eliminates the same 7—F units that would be have been
eliminated by each 1 dB decrease in the global SNR. With
this approximation, we can say that the amount of informa-
tional masking produced by the speech maskers (2 talkers) in
experiment 2 was roughly 20 dB, whereas that produced by
the (energetic) noise masker is about 10—12 dB. Note that
Experiment 2 used different-sex masker and target voices;
hence, a greater amount of informational masking could po-
tentially be introduced by using same-sex masker and target
voices (Brungart, 2001a).

The main difference between the outcomes of this study
and that of Brungart et al. (2006) was the plateau region. In
the Brungart et al. study, the plateau region ranged from
—12 to 0 dB, whereas in the present study, the plateau region
ranged in most cases from —20 to 5 dB and in the steady-
state noise case from —30 to 5 dB. We attribute this differ-
ence primarily to the use of different speech materials. In our
study, listeners had access to contextual cues which we be-
lieve enabled them to segregate the target speech easily even
after including strong (by 20 dB) masker T—F units in the
synthesized stimuli. In contrast, there is no contextual infor-
mation present in the CRM phrases. Taking the outcomes of
both studies into account, we can conclude that the width of
the performance plateau region (near 100% correct) is
greatly affected by the speech material used. Another poten-
tial factor contributing to the differences in the plateau re-
gion between the two studies might be the use of different
T—-F decomposition techniques. The present study used the
FFT, which implicitly uses a uniform frequency spacing to
construct the IdBM stimuli. In contrast, Brungart et al.
(2006) used a bank of 128 gammatone filters, with auditory-
like frequency resolution (i.e., progressively wider filters in
the high frequencies) in place of the FFT. Further experi-
ments are warranted to examine the impact of the 7—F de-
composition technique (FFT versus auditory-like filterbank)
on the intelligibility of IdBM stimuli.

The existence of a wide plateau region has important
implications for speech segregation in multitalker environ-
ments. In this region, the stimuli contain not only target 7—F
units, but also units with stronger masker energy. In fact, in
some cases the masker is stronger than the target by 20 dB.
Yet, these masker units did not interfere with the recognition
of the target speech (performance remained near 100% cor-
rect). We believe that this is not because there were not
enough of them (see Fig. 6) but rather because they occurred
in regions that already contained enough target energy. The
existence of the plateau regions suggests that it is the pattern
of the ideal binary mask (i.e., the pattern of target-dominated
and masker-dominated 7—F units) that matters the most and
not the local SNR of each 7—-F unit, since conceivably dif-
ferent local SNR thresholds may yield the same binary mask
pattern (Brungart er al., 2006). It is this pattern that directs
the listener’s attention to where (in a T—F auditory space)
the target is, and this can be viewed as a perceptual mecha-
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TABLE 1. Errors (in percentage of T—F units misclassified) produced by two noise reduction algorithms in
estimating the ideal binary mask for different values of the SNR threshold (dB). The overall error is computed
(as in Experiment 3) by counting the misclassifications across all T—F units in each frame making no distinction

between the two types of error.

SNR threshold T

Algorithm Error -10 dB -5dB 0 dB 5 dB

Wiener® Type 1 (%) 31.73 26.27 18.30 10.29
(Scalart & Filho, 1996) Type II (%) 21.69 18.73 14.65 10.45
Overall (%) 53.42 45.00 32.95 20.74

Log MMSE" Type I (%) 24.66 16.49 9.72 5.57
(Ephraim & Malah, 1985) Type II (%) 25.13 21.54 16.40 11.27
Overall (%) 49.79 38.04 26.12 16.85

Scalart and Filho (1996).
"Ephraim and Malah (1985).

nism that does not require the listeners to extract specific
target information within each 7—F unit and somehow group
all pieces of the detected 7—F units to hear out the target.
The ideal binary mask pattern provides the cue to where the
target is, an essential cue that is probably used in the second
(or later) stage of the speech segregation process. The impor-
tance of the where cue is also observed and mirrored (per-
haps more clearly) in spatial hearing. Information about
where the target is located in space can greatly enhance its
identification (Kidd et al., 2005; Best et al., 2007).

B. Noise reduction

The present study, as well as others, have demonstrated
the full potential of using the ideal binary mask to improve
(and in some cases restore) intelligibility of speech in multi-
talker or other noisy environments. Algorithms capable of
estimating the ideal binary mask accurately can therefore
yield significant gains in intelligibility, which according to
experiment 1 can range from 70 to 100 percentage points
(experiment 1) improvement for input global SNRs of —5
and —10 dB, respectively. As demonstrated in experiment 3,
these algorithms need to be quite accurate (>90% accurate)
in estimating the ideal binary mask, at least for acoustic mix-
tures in =5 dB SNR. A 10% (or smaller) overall error in
estimating the ideal binary mask is acceptable without com-
promising speech intelligibility (see Fig. 4), at least for mix-
tures in —5 dB multitalker babble. Experiment 4 showed that
the type of error made in classifying target and masker domi-
nated 7—F units is perhaps more important than the overall
amount of error. Performance is affected the most when the
masker dominated 7—F units are wrongly labeled as target-
dominated 7—F units. In contrast, performance remains high
(near 100% correct) if all masker-dominated T—F units are
correctly classified but the target-dominated 7—F units are
misclassified with 60% (or less) error. The outcome in ex-
periment 4 suggests that a right balance needs to be struck
between the two types of errors, as both can affect perfor-
mance, although to a different degree. This tradeoff between
type I and type II errors is often summarized in detection
theory via the receiver operating characteristic (ROC) curves
(e.g., Kay, 1998). Each pair of type I and (1-type II) values
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provides a different point in the ROC curve, with best per-
formance obtained when both types of error are small.

A number of techniques have been proposed in the
CASA literature (see review in Wang and Brown, 2006) for
estimating the ideal binary mask and include methods based
on pitch continuity information (Hu and Wang, 2004; Roman
and Wang, 2006) and sound-localization cues (Roman et al.,
2003). In the method by Hu and Wang (2004), the individual
T—F units are labeled according to the similarity between the
periodicity pattern of the correlogram response and the
dominant pitch of each frame. This method (and the method
in Roman and Wang, 2006), however, is only applicable to
voiced utterances and was evaluated using only objective
measures and not with listening tests. Most of the CASA
techniques proposed thus far are based on elaborate auditory
models and make extensive use of grouping principles (e.g.,
pitch continuity, onset detection) to segregate the target from
the mixture. Alternatively, the ideal binary mask can be es-
timated using simpler algorithms that compute the SNR in
each 7T—F unit and compare the estimated SNR values
against a threshold. Several such algorithms do exist and are
commonly used in speech enhancement applications to im-
prove the quality of degraded speech (see review in Loizou,
2007). To assess how accurate are such algorithms, we pro-
cessed the —5 dB SNR mixtures (20-talker babble) via two
conventional noise reduction algorithms, which we found in
a previous study to preserve intelligibility (Hu and Loizou,
2007a), and computed the percentage of errors made in clas-
sifying target-dominated and masker-dominated 7—F units
(details are given in the Appendix). Overall, the amounts of
errors made by either algorithm are quite high (see Table I),
thus providing a plausible explanation as to why current
noise reduction algorithms cannot improve speech intelligi-
bility, although they improve speech quality (Hu and Loizou,
2007b). More research is thus warranted in developing algo-
rithms capable of estimating more accurately the ideal binary
mask.
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APPENDIX

To assess the accuracy of conventional noise reduction
algorithms in estimating the binary mask, we processed the
-5 dB SNR mixtures (20-talker babble) via two conven-
tional noise reduction algorithms, which we found in a pre-
vious study to preserve intelligibility (Hu and Loizou,
2007a). The two algorithms were first used to estimate the
instantaneous SNR in each 7—F unit as follows:

X(r-1 YAt
SNR(t,k) =a¥ + (1 — @)max Ak( ) -1,0
Di(t-1) Dt

(A1)

where SNR(7,k) is the estimated SNR at time frame ¢ and
frequency bin k, a=0.98, X{(r—1) denotes the power-
spectrum of the enhanced target signal obtained in the previ-

ous frame, DAz(t) denotes the estimated power-spectrum of
the masker [obtained using a noise-estimation algorithm
(Rangachari and Loizou, 2006)], and Y,%(t) denotes the mix-
ture power spectrum. The two noise reduction algorithms
differed in the way they estimated X,%(t— 1) in Eq. (Al), but
both used Eq. (Al) to estimate the instantaneous SNR. The
estimated SNR of each 7-F unit was compared against a
threshold (varying from —10 to 5 dB), and T—F units with
positive SNR were classified as target-dominated 7—F units
and units with negative SNR were classified as masker-
dominated units. The binary mask pattern estimated using
the two algorithms was compared against the (true) ideal
binary mask pattern. Errors were computed in each frame by
comparing the true decision made by the ideal binary mask
with the decision made by the SNR-estimation algorithm
[Eq. (A1)] for each T—F unit. The percentage of type I/II
errors were averaged across the 20 utterances tested. The
results are given in Table I for different values of the local
SNR threshold 7. With T=0 dB (which is the value used in
experiment 4) the type I and II errors are relatively large
(>15%) and the overall error is even larger (~30% ). From
Fig. 5, we see that in order to obtain significant improvement
in intelligibility, the type II error needs to be near 0% when
the type I error is smaller than 20%. Changing the SNR
threshold value affects markedly the amounts of type I and II
errors introduced and does so in a manner that signifies the
tradeoff between the probability of false alarm (type I error)
and probability of detection (I-type II error), typically seen
in ROC curves.

]Type I error (also called false alarm) is produced when deciding hypoth-
esis H, (signal is present) when H is true (signal is absent). Type II error
(also called miss) is produced when deciding H, when H; is true (Kay,
1998).
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