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Traditional noise-suppression algorithms have been shown to improve speech quality, but not
speech intelligibility. Motivated by prior intelligibility studies of speech synthesized using the ideal
binary mask, an algorithm is proposed that decomposes the input signal into time-frequency �T-F�
units and makes binary decisions, based on a Bayesian classifier, as to whether each T-F unit is
dominated by the target or the masker. Speech corrupted at low signal-to-noise ratio �SNR� levels
�−5 and 0 dB� using different types of maskers is synthesized by this algorithm and presented to
normal-hearing listeners for identification. Results indicated substantial improvements in
intelligibility �over 60% points in −5 dB babble� over that attained by human listeners with
unprocessed stimuli. The findings from this study suggest that algorithms that can estimate reliably
the SNR in each T-F unit can improve speech intelligibility.
© 2009 Acoustical Society of America. �DOI: 10.1121/1.3184603�
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I. INTRODUCTION

Dramatic advances have been made in automatic speech
recognition �ASR� technology �Rabiner, 2003�. Despite these
advances, human listener’s word error rates are often more
than an order of magnitude lower than those of state-of-the
art recognizers in both quiet and degraded environments
�Lippmann, 1997, Sroka and Braida, 2005; Scharenborg,
2007�. Large advances have also been made on the develop-
ment of algorithms that suppress noise without introducing
much distortion to the speech signal �Loizou, 2007�. These
algorithms, however, have been shown to improve primarily
the subjective quality of speech rather than speech intelligi-
bility �Hu and Loizou, 2007a, 2007b�. Speech quality is
highly subjective in nature and can be easily improved, at
least to some degree, by suppressing the background noise.
In contrast, intelligibility is related to the underlying message
or content of the spoken words and can be improved only by
suppressing the background noise without distorting the un-
derlying target speech signal. Designing such algorithms has
been extremely challenging, partly because of inaccurate and
often unreliable estimates of the background noise �masker�
signal from the corrupted signal �often acquired using a
single microphone�. Algorithms that would improve intelli-
gibility of speech in noisy environments would be extremely
useful not only in cellphone applications but also in hearing
aids/cochlear implant devices. The development of such al-
gorithms has remained elusive for several decades �Lim,
1978; Hu and Loizou, 2007a�, and perhaps this was due to
the fact that algorithms were sought that would work for all
types of maskers and for all signal-to-noise ratio �SNR� lev-
els, clearly an ambitious goal. In some ASR applications
�e.g., voice dictation� and hearing aid applications �e.g.,
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Zakis et al., 2007�, however, the algorithm can be speaker
and/or masker dependent. Such an approach was taken in
this study.

The approach that is being pursued in the present study
was motivated by intelligibility studies of speech synthesized
using the ideal binary mask �IdBM� �Brungart et al., 2006;
Li and Loizou, 2008b, 2008a�. The IdBM is a technique
explored in computational auditory scene analysis �CASA�
that retains the time-frequency �T-F� regions of the target
signal that are stronger than the interfering noise �masker�,
and removes the regions that are weaker than the interfering
noise. Previous studies have shown that multiplying the
IdBM with the noise-masked signal can yield large gains in
intelligibility, even at extremely low �−5, −10 dB� SNR lev-
els �Brungart et al., 2006; Li and Loizou, 2008b�. In these
studies, prior knowledge of the true IdBM was assumed. In
practice, however, the binary mask needs to be estimated
from the corrupted signal. Motivated by the successful appli-
cation of the IdBM technique for improvement of speech
intelligibility, we focused on developing a classifier that
would identify T-F units as either target-dominated or
masker-dominated.1 This is a conceptually and computation-
ally simpler task than attempting to mimic the human audi-
tory scene analysis using grouping and segmentation prin-
ciples �Hu and Wang, 2004, 2008; Wang and Brown, 2006�,
such as common periodicity across frequency, common off-
sets and onsets, and common amplitude and frequency
modulations. Such techniques would require the reliable de-
tection of F0 and onset/offset segments in noise, a formi-
dable task. The challenge faced in the present work is in the
design of an accurate classifier capable of operating at nega-
tive SNR levels, wherein performance of normal-hearing
�NH� listeners is known to degrade. While many techniques
have been proposed to estimate the IdBM �Wang and Brown,
2006; Hu and Loizou, 2008�, none of the techniques were
evaluated with human listeners at extremely low �negative�

SNR levels. Most of the proposed algorithms have been
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evaluated using objective measures �Hu and Wang, 2004,
2008� and in terms of ASR error rates �Seltzer et al., 2004�
rather than in terms of speech intelligibility scores.

The goal of this study is to evaluate the intelligibility of
speech synthesized via an algorithm that decomposes the in-
put signal into T-F regions, with the use of a crude auditory-
like filterbank, and uses a simple binary Bayesian classifier
to retain target-dominated spectro-temporal regions while re-
moving masker-dominated spectro-temporal regions. Ampli-
tude modulation spectrograms �AMSs� �Kollmeier and Koch,
1994� were used as features for training Gaussian mixture
models �GMMs� to be used as classifiers. Unlike most noise-
suppression algorithms �Loizou, 2007�, the proposed algo-
rithm requires no speech/noise detection nor the estimation
of noise statistics. Speech corrupted at low SNR levels by
different types of maskers is synthesized using this algorithm
and presented to human listeners for identification. The
present work tests the hypothesis that algorithms that make
use of knowledge of when the target is stronger than the
masker �at each T-F unit� can improve speech intelligibility
in noisy conditions.

II. PROPOSED NOISE-SUPPRESSION ALGORITHM

Figure 1 shows the block diagram of the proposed algo-
rithm, consisting of a training stage �top panel� and an intel-
ligibility enhancement stage �bottom panel�. In the training
stage, features are extracted, typically from a large speech
corpus, and then used to train two GMMs representing two
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FIG. 1. Block diagram of the training and
feature classes: target speech dominating the masker and
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masker dominating target speech. AMS are used in this work
as features, as they are neurophysiologically and psychoa-
coustically motivated �Kollmeier and Koch, 1994; Langner
and Schreiner, 1988�. In the enhancement stage, a Bayesian
classifier is used to classify the T-F units of the noise-masked
signal into two classes: target-dominated and masker-
dominated. Individual T-F units of the noise-masked signal
are retained if classified as target-dominated or eliminated if
classified as masker-dominated, and subsequently used to re-
construct the enhanced speech waveform.

A. Feature extraction

The noisy speech signal is first bandpass filtered into 25
channels according to a mel-frequency spacing �shown in the
subband filtering block in Fig. 1�. The envelopes in each
band are computed by full-wave rectification and then deci-
mated by a factor of 3 �shown in the envelope extraction
block in Fig. 1�. The decimated envelope signals are subse-
quently segmented into overlapping segments of 128
samples �32 ms� with an overlap of 64 samples. Each seg-
ment is Hanning windowed and following zero-padding, a
256-point fast Fourier transform �FFT� is computed. The
FFT computes the modulation spectrum in each channel,
with a frequency resolution of 15.6 Hz. Within each band,
the FFT magnitudes are multiplied by 15 triangular-shaped
windows spaced uniformly across the 15.6–400 Hz range
and summed up to produce 15 modulation spectrum ampli-
tudes. The 15 modulation amplitudes represent the AMS fea-
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ture vector �Tchorz and Kollmeier, 2003�, which we denote
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by a�� ,k�, where � indicates the time index and k indicates
the subband. In addition to the AMS feature vector, we also
include delta features to capture feature variations across
time and frequency. The overall feature vector is given by

A��,k� = �a��,k�,�aT��,k�,�aK��,k�� , �1�

where

�aT�1,k� = a�2,k� − a�1,k�, � = 1,

�aT��,k� = a��,k� − a�� − 1,k�, � = 2, . . . ,T , �2�

�aK��,1� = a��,2� − a��,1�, k = 1,

�aK��,k� = a��,k� − a��,k − 1�, k = 2, . . . ,K , �3�

where �aT�� ,k� and �aK�� ,k� denote the delta feature vec-
tors computed across time and frequency, respectively, and T
is the total number of segments. The number of subbands, K,
was set to 25 in this work, and the total dimension of the
feature vector A�� ,k� was 45 �=3�15�.

B. Training stage

A two-class Bayesian classifier was used to estimate the
binary mask for each T-F unit. The distribution of the feature
vectors of each class was represented with a GMM. The two
classes, denoted as �0 for mask 0 �masker-dominated T-F
units� and �1 for mask 1 �target-dominated T-F units�, were
further subdivided into two smaller classes, i.e., �0

= ��0
0 ,�0

1�, �1= ��1
0 ,�1

1�. This sub-class division yielded faster
convergence in GMM training and better classification. In
the training stage, the noisy speech spectrum, Y�� ,k�, at time
slot � and k-th subband, was classified into one of four sub-
classes as follows:

Y��,k� ��
�0

0 if ���,k� � TSNR0

�0
1 if TSNR0 � ���,k� � TSNR

�1
0 if TSNR � ���,k� � TSNR1

�1
1 if TSNR1 � ���,k� ,

� �4�

where ��� ,k� is the local �true� SNR computed as the ratio of
envelope energies of the �clean� target speech and masker
signals, and TSNR0, TSNR1, and TSNR are thresholds. The
TSNR0 was chosen in the training stage so as to have equal
amount of training data in the �0

0 and �0
1 classes. Classifica-

tion performance was not found to be sensitive to this thresh-
old value. The SNR threshold, TSNR, was set to −8 dB for the
first 15 frequency bands �spanning 68–2186 Hz� and to
−16 dB for the higher frequency bands. This was done to
account for the non-uniform masking of speech by the
maskers across the spectrum. We utilized 256-mixture
Gaussian models for modeling the distributions of the feature
vectors in each class. The initial Gaussian model parameters
�mixture weights, mean vectors, and covariance matrices�
were obtained by running 15 iterations of the k-means clus-
tering algorithm. Full covariance matrices were used for each
mixture. If a particular covariance matrix was found to be
singular during training, the corresponding mixture weight
was set to zero. The final GMM parameters were obtained

using the expectation-maximization training algorithm
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�Dempster et al., 1977�. The a priori probability for each
sub-class �P��0

0� , P��0
1� , P��1

0� , P��1
1�� was calculated by

counting the number of feature vectors belonging to the cor-
responding class and dividing that by the total number of
feature vectors.

C. Enhancement stage

In the enhancement stage, the binary masks of each T-F
unit are first estimated using a Bayesian classifier. Each T-F
unit of noisy speech signal is subsequently retained or elimi-
nated by the estimated binary mask and synthesized to pro-
duce the enhanced speech waveforms.

1. Bayesian classification

The T-F units are classified as �0 or �1 by comparing
two a posteriori probabilities, P��0 	AY�� ,k�� and
P��1 	AY�� ,k��. This comparison produces an estimate of the
binary mask, G�� ,k�, as follows:

G��,k� = 
0 if P��0	AY��,k�� � P��1	AY��,k��
1 otherwise,

� �5�

where P��0 	AY�� ,k�� is computed using Bayes’ theorem as
follows:

P��0	AY��,k�� =
P��0,AY��,k��

P�AY��,k��

=
P��0

0�P�AY��,k�	�0
0� + P��0

1�P�AY��,k�	�0
1�

P�AY��,k��
.

�6�

The a posteriori probability P��1 	AY�� ,k�� is computed
similarly.

2. Waveform synthesis

Figure 2 shows the block diagram of the waveform syn-
thesis stage. The corrupted speech signal is first filtered into
25 bands �same bands used in the feature-extraction stage�.
To remove across-channel differences, the output of each fil-
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FIG. 2. Block diagram of the waveform synthesis stage of the proposed
algorithm.
ter is time reversed, passed through the filter, and reversed
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again �Wang and Brown, 2006�. The filtered waveforms are
windowed with a raised cosine every 32 ms with 50% over-
lap between segments, and then weighted by the estimated
binary mask �Eq. �5��. Finally, the estimated target signal is
reconstructed by summing the weighted responses of the 25
filters. Figure 3 shows an example spectrogram of a synthe-
sized signal using the proposed algorithm. In this example,
the clean speech signal �Fig. 3�a�� is mixed with multitalker
babble at −5 dB SNR �Fig. 3�b��. The estimated binary mask
�as per Eq. �5�� and synthesized waveform are shown in Figs.
3�c� and 3�d�, respectively.

III. LISTENING EXPERIMENTS

A. Stimuli

Sentences taken from the IEEE database �IEEE, 1969�
were used as test material. The sentences in the IEEE data-
base are phonetically balanced with relatively low word-
context predictability. The sentences were produced by one
male and one female speaker in a sound-proof booth using
Tucker-Davis Technologies �TDT� recording equipment. The
sentences were originally recorded at a sampling rate of
25 kHz and downsampled to 12 kHz. Three types of noise
�20-talker babble, factory, speech-shaped noise� were used as
maskers. The �steady� speech-shaped noise was stationary
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FIG. 3. �a� Wide-band spectrogram of an IEEE sentence in quiet. �b� Spectro
estimated using Eq. �5�, with black pixels indicating target-dominated T-F un
obtained by multiplying the binary mask shown in panel �c� with the corrup
having the same long-term spectrum as the sentences in the
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IEEE corpus. The factory noise was taken from the NOISEX
database �Varga and Steeneken, 1993�, and the babble �20
talkers with equal number of female and male talkers� was
taken from the Auditec CD �St. Louis, MO�.

A total of 390 IEEE sentences were used to train the
GMM models. These sentences were corrupted by three
types of noise at −5, 0, and 5 dB SNR. The maskers were
randomly cut from the noise recordings and mixed with the
target sentences at the prescribed SNRs. Each corrupted sen-
tence had thus a different segment of the masker, and this
was done to evaluate the robustness of the Bayesian classifier
in terms of generalizing to different segments of the masker
having possibly different temporal/spectral characteristics.
Three different training sets were prepared to train three
GMM models and three test sets were used for the evaluation
of the GMM models. Two types of GMM models were
trained: �1� a single-noise GMM model �denoted as sGMM�
trained only on a single type of noise �tested with the same
type of noise� and �2� a multi-noise GMM model �denoted as
mGMM� trained on all three types of noise �tested with one
of the three types of noise�. The latter models �mGMM� were
used to assess the performance and robustness of a single
GMM model in multiple noisy environments. As we were
limited by the total number of sentences available in the

1.5 2 2.5

1.5 2 2.5

1.5 2 2.5

(seconds)
1.5 2 2.5

of corrupted sentence by multitalker babble at −5 dB SNR. �c� Binary mask
d white pixels indicating masker-dominated T-F units. �d� Synthesized signal
ignal shown in panel �b�.
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randomly assigned to the various conditions. This was nec-
essary to avoid testing NH listeners with the same sentences
used in the training stage. More specifically, three sets of
training data were created with each set having 390 sen-
tences and two training sets having an overlap of 150 sen-
tences. There was no overlap between the training and test-
ing sets in any condition.

B. Procedure

A total of 17 NH listeners �all native speakers of Eng-
lish� were recruited for the listening tests. All subjects were
paid for their participation. The listeners were randomly as-
signed to the conditions involving processed IEEE sentences
produced by the male and female speakers �eight listened to
the IEEE sentences produced by the male speaker and nine
listened to the IEEE sentences produced by the female
speaker�. Subjects participated in a total of 24 conditions �=2
SNR levels �−5 dB,0 dB��4 processing conditions�3
types of maskers�. The processing conditions included
speech processed using �1� sGMM models, �2� mGMM mod-
els, �3� the idBM, and �4� the unprocessed �noise-masked�
stimuli. The IdBM condition was included as a control con-
dition to assess the performance of the proposed algorithms
relative to the ideal condition in which we have a priori
knowledge of the local SNR and IdBM. The IdBM was ob-
tained by comparing the local �true� SNR against a pre-
defined threshold. The SNR at each T-F unit was computed
as the ratio of the envelope energies of the �clean� target
speech and masker signals in each unit. The IdBM takes a
value of 1 if the local SNR is greater than the threshold and
takes the value of 0 otherwise.

The experiments were performed in a sound-proof room
�Acoustic Systems, Inc.� using a PC connected to a Tucker-
Davis system 3. Stimuli were played to the listeners monau-
rally through Sennheiser HD 250 Linear II circumaural head-
phones at a comfortable listening level. Prior to the sentence
test, each subject listened to a set of noise-corrupted sen-
tences to be familiarized with the testing procedure. During
the test, subjects were asked to write down the words they
heard. The whole listening test lasted for about 2–3 h, which
was split into two sessions each lasting 1–1.5 h. 5 min
breaks were given to the subjects every 30 min. Two lists of
sentences �i.e., 20 sentences� were used per condition, and
none of the lists were repeated across conditions. The sen-
tence lists were counterbalanced across subjects. Sentences
were presented to the listeners in blocks, and 20 sentences
were presented in each block for each condition. The order
of the conditions was randomized across subjects.

IV. RESULTS

The mean performance, computed in terms of percent-
age of words identified correctly by the NH listeners, are
plotted in Fig. 4 for sentences produced by male �top panel�
and female speakers �bottom panel�. A substantial improve-
ment in intelligibility was obtained with the proposed algo-
rithm using both sGMM and mGMM models, compared to
that attained by human listeners with unprocessed �cor-

rupted� speech. The improvement �over 60% points in some
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cases� was more evident at −5 dB SNR levels for all three
maskers tested. Performance at 0 dB SNR in the female-
speaker conditions �bottom panel of Fig. 4� was limited in
most cases by ceiling effects. Analysis of variance �with re-
peated measures� indicated significant effect of masker type
�F�2,14�=41.2, p�0.0005�, significant effect of SNR level
�F�1,7�=583.3, p�0.0005�, and significant effect of pro-
cessing algorithm �F�3,21�=314.1, p�0.0005�. All interac-
tions were found significant �p�0.05�. Post-hoc analysis
�Schéffe�, corrected for multiple comparisons, was done to
assess significant differences between conditions. For the
male-speaker data �top panel of Fig. 4�, performance at
−5 dB SNR with mGMM models was significantly �p
�0.0005� higher than that attained by the listeners in all
baseline masker conditions �unprocessed sentences� except
the factory condition. Performance at −5 and 0 dB SNR with
sGMM models was significantly �p�0.005� higher than that
attained in all baseline masker conditions. For the female-
speaker data, performance at −5 dB SNR with sGMM and
mGMM models was significantly �p�0.0005� higher than
performance obtained with unprocessed speech in all masker
conditions. There was no significant �p�0.05� difference in
scores between the various algorithms in the 0 dB SNR
masker conditions, as performance was limited by ceiling
effects. Consistent with prior studies �Brungart et al., 2006;
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FIG. 4. Mean speech recognition scores obtained by 17 NH listeners for
corrupted �unprocessed� sentences �denoted as UN�, sentences processed
using the sGMM �single-noise trained GMMs� and mGMM models
�multiple-noise trained GMMs�, and sentences processed using the IdBM in
the various SNR/masker conditions. Error bars indicate standard errors of
the mean.
Li and Loizou, 2008b�, highest performance was obtained
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with the IdBM. Performance with sGMM models was com-
parable to that obtained with the IdBM in nearly all condi-
tions. Note that with the exception of one condition �factory
noise at −5 dB SNR�, performance with mGMM models did
not differ significantly �p�0.05� from that obtained with
sGMM models, an outcome demonstrating the potential of
the proposed approach in training a single GMM model that
would be effective in multiple listening environments.

To quantify the accuracy of the binary Bayesian classi-
fier, we computed the average hit �HIT� and false alarm �FA�
rates for three test sets not included in the training. Each test
set comprised of 60 sentences, for a total of 180 sentences
corresponding to 893,950 T-F units �35,758 frames�25 fre-
quency bands� for the male-speaker sentences and 811,750
T-F units �32 470�25 frequency bands� for the female-
speaker sentences. HIT and FA rates were computed by com-
paring the estimated binary mask against the �oracle� IdBM.
Table I shows the results obtained using sGMM and mGMM
models in the various masker conditions. High hit rates �low-
est with factory noise at 0 dB, male speaker; 75.18%� and
low false-alarm rates �highest with factory noise at −5 dB,
female speaker; 17.26%� were obtained with sGMM models.
The hit rate obtained with mGMM models was about 10%
lower than that of sGMM models for the male speaker. The
difference was much smaller for the female speaker �about
5%�. As demonstrated in Li and Loizou, �2008b�, low false
alarm rates ��20% assuming high hit rates� are required to
achieve high levels of speech intelligibility.

To predict the intelligibility of speech synthesized using
the estimated binary masks �based on the Bayesian classi-
fier�, we propose a simple metric based on the difference
between the hit rate and false alarm rates, i.e., HIT-FA. This
metric bears resemblance to the sensitivity index, d�, used in
psychoacoustics �Macmillan and Creelman, 2005�. The index
d� is derived assuming a Gaussian distribution of responses.
No such assumptions are made with the use of the HIT-FA
difference metric. A modestly high correlation �r=0.80� was
obtained between this simple difference metric and speech

TABLE I. Hit �HIT� and false alarm �FA� rates obtained using the sGMM a
masker conditions.

Speaker Model Performance

Babble

−5 dB

Male sGMM HIT 86.96%
FA 14.54%

HIT-FA 72.42%
mGMM HIT 78.24%

FA 18.83%
HIT-FA 59.41%

Female sGMM HIT 89.95%
FA 15.23%

HIT-FA 74.72%
mGMM HIT 82.28%

FA 18.03%
HIT-FA 64.25%
intelligibility scores based on data from the same three test
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sets used in the listening experiments �see Fig. 5�. More gen-
erally, the difference metric, d	=	 ·H− �1−	� ·FA, can be
used to obtain higher correlation by optimizing the value of
	 for different speech materials. A value of 	=0.3 yielded a
maximum correlation of r=0.84 for our test materials �IEEE
sentences�, suggesting that more weight needs to be placed
on FA values, an outcome consistent with intelligibility stud-
ies �Li and Loizou, 2008b�. Table II shows the performance
�in terms of HIT and FA rates� of two conventional noise
reduction algorithms, the Wiener algorithm �Scalart and
Filho, 1996� and the MMSE algorithm �Ephraim and Malah,
1984�. The binary mask was estimated by comparing the
SNR in each frequency bin against the same threshold TSNR

used in the proposed algorithm �see Sec II B�. The SNR was
estimated from the corrupted signal using the decision-
directed approach �Ephraim and Malah, 1984�. As can be
seen, the hit rates obtained by the GMM binary classifiers
�Table I� are substantially higher than those obtained with
conventional noise reduction algorithms. This outcome
might explain, at least, partially why current noise reduction
algorithms, even the most sophisticated ones, do not improve
speech intelligibility �Hu and Loizou, 2008�.

GMM models for the male-speaker and female-speaker data in the various
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9% 24.12% 22.91% 12.75% 13.24%
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6% 17.26% 12.12% 12.65% 10.26%
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3% 56.74% 60.33% 68.27% 66.48%
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FIG. 5. Scatter plot showing the correlation between human listener’s rec-
ognition scores, obtained for the male-speaker data at −5 dB in the three
masker conditions, and a metric based on the difference between the result-
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To assess the robustness of the binary classifier in terms
of handling speakers not included in the training, we per-
formed a cross-gender test wherein we used the male-trained
models to classify AMS features extracted from the female-
speaker data, and vice versa �see Table III�. The performance
obtained with the cross-gender models was comparable to
that obtained with the same-speaker models �Table I� show-
ing differences ranging from 2.25% �factory noise, female
speaker� up to 9.77% �speech-shaped noise, male speaker�.

Finally, to quantify the gain in classification accuracy
obtained with the proposed delta features �Eqs. �2� and �3��,
we compared the hit and false alarm rates obtained with and
without the use of delta features �see Table IV�. The same
test set used in the evaluation of the cross-gender models
�Table III� was used in the evaluation of the delta features.
As can be seen, delta features improved the hit rate consid-
erably �by as much as 20% in some cases�, without increas-
ing the false alarm rate.

V. DISCUSSION AND CONCLUSIONS

Large gains in intelligibility were achieved with the pro-
posed algorithm �Fig. 4�. The intelligibility of speech pro-
cessed by the proposed algorithm was substantially higher
than that achieved by human listeners listening to unproc-
essed �corrupted� speech, particularly at extremely low SNR
levels �−5 dB�. We attribute this to the accurate classification
of T-F units into target- and masker-dominated T-F units, and
subsequently reliable estimation of the binary mask. As dem-
onstrated by several intelligibility studies with NH listeners
�Brungart et al., 2006; Li and Loizou, 2008b� access to reli-
able estimates of the binary mask can yield substantial gains
in intelligibility. The accurate classification of T-F units into
target- and masker-dominated T-F units was accomplished
with the use of neurophysiologically-motivated features

TABLE II. Binary mask accuracy obtained by two
speaker data at −5 dB SNR.

Babble

Wiener MMSE W

HIT 54.60% 68.44% 5
FA 55.62% 66.94% 5

HIT-FA −1.02% 1.50% −

TABLE III. Classification of male-speaker data using
the female-speaker data using the male-speaker mod

Male-speaker mo

Babble Factory Sp

Male-
speaker

data

HIT 87.82% 82.88%
FA 16.06% 16.97%

HIT-FA 71.76% 65.91%

Female-
speaker

data

HIT 88.22% 82.68%
FA 18.78% 17.34%

HIT-FA 69.44% 65.34%
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�AMS� and carefully designed Bayesian classifiers �GMMs�.
Unlike the mel-frequency cepstrum coefficients �Davis and
Mermelstein, 1980� features commonly used in ASR, the
AMS features capture information about amplitude and fre-
quency modulations, known to be critically important for
speech recognition �Zeng et al., 2005�. Furthermore, the pro-
posed delta features �Eqs. �2� and �3�� are designed to cap-
ture to some extent temporal and spectral correlations. Un-
like the delta features commonly used in ASR �Furui, 1986�,
the simplified delta features proposed in Eq. �2� use only past
information and are therefore amenable to real-time imple-
mentation with low latency.

GMMs are known to accurately represent a large class
of feature distributions, and as classifiers, GMMs have been
used successfully in several applications and, in particular
speaker recognition �e.g., Reynolds and Rose, 1995�. Other
classifiers �e.g., neural networks, and support vector ma-
chines� could alternatively be used �Tchorz and Kollmeier,
2003�. Our attempt, however, to use neural networks2 as
classifiers was not very successful as poorer performance
was observed, particularly when different segments �ran-
domly cut� of the masker were mixed with each test sentence
�as done in the present study�.

There exist a number of differences in our approach that
distinguishes it from previous attempts to estimate the binary
mask. First, their approach is simple as it is based on the
design of an accurate �binary� Bayesian classifier. Others
�Wang and Brown, 2006� focused on developing sophisti-
cated grouping and segmentation algorithms that were moti-
vated largely by existing knowledge in auditory scene analy-
sis �Bregman, 1990�. Second, the resolution of the auditory
filters used in the present work is crude compared to that
used by humans. A total of 128 Gammatone filters have been
used by others �Brungart et al., 2006; Hu and Wang, 2004�

ventional noise reduction algorithms for the male-

Factory Speech-shaped

r MMSE Wiener MMSE

57.52% 58.59% 58.89%
60.38% 50.44% 52.24%
−2.86% 8.15% 6.65%

female-speaker model �sGMM� and classification of
MM� at −5 dB SNR.

Female-speaker model

shaped Babble Factory Speech-shaped

4% 79.82% 75.89% 78.68%
0% 15.34% 16.41% 11.61%
4% 64.48% 59.48% 67.07%

2% 89.52% 82.42% 88.81%
1% 13.72% 14.83% 10.83%
1% 75.80% 67.59% 77.98%
con

iene

3.14%
4.48%
1.34%
the
el �sG
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eech-
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for modeling the auditory periphery. A smaller number �25�
of channels was used in this work for two reasons: �a� to
keep the feature dimensionality small and �b� to make it
appropriate for hearing aid and cochlear implant applica-
tions, wherein the signal is typically processed through a
small number of channels. Previous work in our laboratory
�Li and Loizou, 2008a� demonstrated that spectral resolution
has a significant effect on the intelligibility of IdBM speech,
but the use of 25 channels seemed to be sufficient for accu-
rate speech recognition. Third, our approach required limited
amount of training data. Fewer than 400 sentences �
�20 min� were used for training compared to thousands of
sentences ��1–2 h� used by others �Seltzer et al., 2004�.
Finally, the GMM training used in this work does not require
access to a labeled speech corpus, while the methods pro-
posed by others required the use of accurate F0 values or
voiced/unvoiced segmentation �Hu and Wang, 2004, 2008;
Seltzer et al., 2004�.

The proposed algorithm can be used not only for robust
ASR �e.g., Cooke et al., 2001� or cellphone applications but
also for hearing aids or cochlear implant devices. Modern
hearing aids use sound classification algorithms �e.g., Nor-
dqvist and Leijon, 2004� to identify different listening situa-
tions and adjust accordingly hearing aid processing param-
eters. All advantages cited above make the proposed
approach suitable for trainable hearing aids �Zakis et al.,
2007� and cochlear implant devices. As these devices are
powered by a digital signal processor chip, the training can
take place at the command of the user whenever in a new
listening environment. Following the training stage, the user
can initiate the proposed algorithm to enhance speech intel-
ligibility in extremely noisy environments �e.g., restaurants�.
As shown in Sec. III, a single GMM trained on multiple
types of noise �mGMM� can yield high performance; how-
ever, a user might encounter a new type of noise not included
in the training set. In such circumstances, either new training
needs to be initiated or perhaps adaptation techniques can be
used to adapt the parameters of existing GMM models to the
new data �Reynolds et al., 2000�.

Humans outperform ASR and CASA systems on various
recognition tasks and are far better at dealing with accents,
noisy environments, and differences in speaking style/rate
�Lippmann, 1997; Scharenborg, 2007�. Neither ASR nor
CASA algorithms, however, have yet reached the level of
performance obtained by human listeners, despite the level
of sophistication built in these algorithms �Lippmann, 1997�.
The present study demonstrated that if the goal of CASA is

TABLE IV. Performance comparison, in terms of hit
and AMS+Delta feature vectors for the male-speake

Babble

AMS only AMS+Delta AMS

HIT 79.46% 87.82% 60.5
FA 18.19% 16.06% 19.3

HIT-FA 61.27% 71.76% 41.2
to design algorithms that would perform as well or better
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than humans, it is not always necessary to mimic all aspects
of the human auditory processing. Knowledge of when the
target is stronger than the masker in each T-F unit is all that
is required to achieve high levels of speech understanding
�Li and Loizou, 2008b�. This reduces the problem to that of
designing an accurate binary classifier �see Eq. �5��. Comput-
ers can generally be trained to classify accurately not only
binary datasets �as in the present work� but also complex
data patterns. The humans’ ability, however, to detect the
target signal in the presence of a masker within a critical
band is limited by simultaneous �and temporal� masking and
is dependent on several factors including the masker fre-
quency �in relation to the target’s�, the masker level and the
type of masker �e.g., tonal or noise-like� �Moore, 2003�. The
present study demonstrated that computer algorithms can be
designed to overcome these shortcomings and subsequently
improve speech intelligibility in noisy conditions.
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1A T-F unit is said to be target-dominated if its local SNR is greater than
0 dB and is said to be masker-dominated otherwise. These definitions can
be extended by using a threshold other than 0 dB. In this paper, we define
a target-dominated unit as a T-F unit for which the SNR is greater than a
predefined threshold even if the power of the target signal is smaller than
that of the masker �this occurs when the chosen threshold is �0 dB�.
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The output neuron activities indicated the respective SNR in each channel.
The predicted SNR values from the output layer were compared against a
SNR threshold of −8 dB to estimate the binary mask.
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