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Improving Speech Intelligibility in Noise Using
Environment-Optimized Algorithms

Gibak Kim and Philipos C. Loizou, Senior Member, IEEE

Abstract—While most speech enhancement algorithms improve
speech quality, they may not improve speech intelligibility in noise.
This paper focuses on the development of an algorithm that can be
optimized for a specific acoustic environment and improve speech
intelligibility. The proposed method decomposes the input signal
into time–frequency (T-F) units and makes binary decisions,
based on a Bayesian classifier, as to whether each T-F unit is
dominated by the target signal or the noise masker. Target-domi-
nated T-F units are retained while masker-dominated T-F units
are discarded. The Bayesian classifier is trained for each acoustic
environment using an incremental approach that continuously
updates the model parameters as more data become available.
Listening experiments were conducted to assess the intelligibility
of speech synthesized using the incrementally adapted models as
a function of the number of training sentences. Results indicated
substantial improvements in intelligibility (over 60% in babble at

5 dB SNR) with as few as ten training sentences in babble and
at least 80 sentences in other noisy conditions.

Index Terms—Environment-optimized algorithms, speech en-
hancement, speech intelligibility.

I. INTRODUCTION

L ARGE advances have been made in the development of
enhancement algorithms that can suppress background

noise and improve speech quality [1]. Considerably smaller
progress has been made, however, in designing algorithms
that can improve speech intelligibility. As demonstrated in
[2], algorithms that improve speech quality do not necessarily
improve speech intelligibility. This is most likely due to the
distortions introduced to the speech signal. In contrast to speech
quality, intelligibility relates to the understanding of the un-
derlying message or content of the spoken words, and is often
measured by counting the number of words identified correctly
by human listeners. Intelligibility can potentially be improved
only by suppressing the background noise without distorting
the underlying target speech signal. Algorithms that would
improve intelligibility of speech in noisy environments would
be extremely useful not only in cellphone applications but also
in hearing aids/cochlear implant devices. The development of
such algorithms has remained elusive for several decades [2],
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[3], and perhaps this was due to the fact that algorithms were
sought that would work for all types of maskers (noise) and for
all signal-to-noise ratio (SNR) levels, clearly an ambitious goal.
In some speech recognition applications (e.g., voice dictation)
and hearing aid applications (e.g., [4]), however, the algorithm
can be speaker and/or environment dependent.

Several environment-dependent algorithms have been pro-
posed recently in [5]–[10]. The innovation of these algorithms
lies in the derivation of spectral weighting functions (gain
functions) that have been trained in a data-driven fashion based
on various error criteria. Unlike the gain functions derived
for minimum mean square error (MMSE) and maximum a
posteriori (MAP) estimators [11]–[13], the gain functions
derived in [7]–[10] make no assumptions about the probability
density functions (pdf) of the complex clean and noise spectra.
Fingscheidt et al. [10] have used a large corpus of clean speech
and noise data to train frequency-specific gain functions for a
specific noise environment. The gain functions were expressed
as a function of the a posteriori and a priori SNRs (computed
using a modified decision-directed approach [11]) and were
derived by minimizing various perceptually motivated distance
metrics [14]. The data-derived gain functions were stored
in look-up tables indexed by the a posteriori and a priori
SNRs, and used for enhancing speech in the trained acoustic
environments. When tested in automotive environments, the
data-driven approach [10] outperformed conventional algo-
rithms (e.g., MMSE) both in terms of speech distortion and
noise attenuation. The data-driven method proposed in [8] com-
pared favorably to current state-of-the art noise suppression
algorithms.

The above data-driven and/or environment-optimized algo-
rithms performed well in terms of improving speech quality,
but have not been evaluated in terms of speech intelligibility.
Given our experience with MMSE-based speech enhancement
algorithms [2], we do not expect significant improvements in in-
telligibility with these algorithms.

This paper takes a different approach that does not rely
on the derivation of spectral weighting (gain) functions, but
rather focuses on the reliable classification of the spectral
SNR in two regions. The pursued approach is motivated by
intelligibility studies of speech synthesized using the ideal
binary mask (IdBM) [15]–[17], which in turn requires access
to the SNR at each frequency bin. The ideal binary mask (orig-
inally known as a priori mask [18]) is a technique explored
in computational auditory scene analysis (CASA) that retains
the time-frequency (T-F) regions of the target signal that are
stronger (i.e., SNR dB) than the interfering noise (masker),
and removes the regions that are weaker than the interfering
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noise (i.e., SNR dB). Previous studies have shown that
multiplying the ideal binary mask with the noise-masked
signal can yield large gains in intelligibility, even at extremely
low 5 10 dB SNR levels [15], [16]. In these studies,
prior knowledge of the true spectral SNR and subsequently
the ideal binary mask was assumed. In practice, however,
the binary mask needs to be estimated from the corrupted
signal requiring an accurate estimate (and classification) of the
spectral SNR. In our previous work [19], we have proposed
a speech enhancement method which estimates the binary
mask using a Bayesian classifier and synthesizes the enhanced
signal by binary masking (i.e., multiplying by a binary gain
function) the noisy spectra. This algorithm decomposes the
input signal into T-F units with the use of a crude auditory-like
filterbank and uses a simple binary Bayesian classifier to retain
target-dominant1 T-F units while removing masker-dominant
units. Amplitude modulation spectrograms (AMS) [20] were
used as features for training Gaussian mixture models (GMMs)
to be used as classifiers. Unlike most speech enhancement algo-
rithms [1], the proposed algorithm did not require speech/noise
detection nor the estimation of noise statistics. This method
was evaluated using listening tests and shown to achieve large
gains in speech intelligibility at extremely low SNR levels. The
listening tests were focused on extremely low SNR levels (e.g.,

5 dB), such as those encountered in military applications,
restaurants and manufacturing facilities, since speech intelligi-
bility by normal-hearing listeners is known to suffer primarily
at such low SNR levels.

The approach proposed in [19] required hundreds of sen-
tences for training, and the batch training procedure used was
burdensome in terms of computational requirements, thereby
hampering rapid adaptation to new listening environments. In
this paper, we investigate alternative training procedures for
adapting/updating the model parameters for fast adaptation
to new acoustic environments. More precisely, we consider
an incremental training approach which starts from an initial
model trained with a small amount of data and updates the
model parameters as more data become available. Listening
experiments were conducted to assess the performance of the
incrementally adapted GMMs as a function of the number
of sentences used for training. Speech was synthesized with
the adapted GMMs and presented to normal-hearing listeners
for identification. The aim of the listening experiments is to
determine the minimum amount (in terms of duration) of
training data required to obtain significant improvements in
intelligibility relative to that of unprocessed (noise-masked)
sentences.

II. BINARY-MASK BASED SPEECH ENHANCEMENT ALGORITHM

Fig. 1 shows the block diagram of the proposed algorithm
[19], consisting of a training stage (top panel) and an intelligi-
bility enhancement stage (bottom panel). In the training stage,
features are extracted, typically from a large speech corpus,

1A T-F unit is said to be target-dominated if its local SNR is greater than 0 dB
and is said to be masker-dominated otherwise. These definitions can be extended
by using a threshold other than 0 dB. In this paper, we define a target-dominated
unit as a T-F unit for which the SNR is greater than a predefined threshold even
if the power of the target signal is smaller than that of the masker (this may occur
when the chosen threshold is lower than 0 dB).

Fig. 1. Block diagram of the training and enhancement stages for the speech
enhancement based on the binary masking of T-F units.

and then used to train two Gaussian mixture models (GMMs)
representing two feature classes: target speech dominating
the masker and masker dominating target speech. In [21],
harmonicity-based features were extracted directly from the
speech signal, and used in a Bayesian classifier to estimate
the binary mask. The reliability, however, of the harmonicity
cues depends largely on the pitch estimation algorithm, which
is often inaccurate in low SNR (e.g., SNR dB) environ-
ments. In this paper, AMS are used as features, as they are
neurophysiologically and psychoacoustically motivated [20],
[22]. In the enhancement stage, a Bayesian classifier is used to
classify the time–frequency units of the noise-masked signal
into two classes: target-dominated and masker-dominated.
Individual T-F units of the noise-masked signal are retained
if classified as target-dominated or eliminated if classified as
masker-dominated, and subsequently used to reconstruct the
enhanced speech waveform.

A. Feature Extraction

The noisy speech signal is first bandpass filtered into 25 chan-
nels according to a mel-frequency spacing, spanning a 6 kHz
(68.5–6000 Hz) bandwidth. The sampling rate was 12 kHz. The
envelopes in each subband are computed by full-wave rectifi-
cation and then decimated by a factor of 3. The decimated en-
velopes are segmented into overlapping segments of 128 sam-
ples (32 ms) with 50% overlap. Each segment is Hann win-
dowed and transformed using a 256-point fast Fourier transform
(FFT) following zero-padding. The FFT computes the modula-
tion spectrum of each subband, with a frequency resolution of
15.6 Hz. Within each subband, the FFT magnitudes are mul-
tiplied by 15 triangular windows spaced uniformly across the
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15.6–400 Hz range and summed up to produce 15 modulation
spectrum amplitudes. The 15 modulation amplitudes represent
the AMS feature vector [23], which we denote by , where

indicates the time (frame) index and indicates the subband. In
addition to the AMS feature vector, we also include delta fea-
tures to capture feature variations across time and frequency.
The overall feature vector is given by

(1)

where

(2)

(3)

where and denote the delta feature vec-
tors computed across time and frequency, respectively, and is
the total number of segments in each sentence. The number of
subbands, , was set to 25 in this work, and the total dimension
of the feature vector was .

B. Training Stage

We use a Bayesian classifier to estimate the binary mask of
each T-F unit. The distribution of the feature vectors of each
class was represented with a Gaussian Mixture Model (GMM)
composed of the parameters
where is the number of mixture components, is the mix-
ture weight, is the ( -dimensional) mean, and is the
covariance matrix. The two classes, denoted as for mask
0 (masker-dominated T-F units), and for mask 1 (target-
dominated T-F units), were further subdivided into two smaller
classes, i.e., , . This subclass
division yielded faster convergence in GMM training and better
classification. In the training stage, the noisy speech spectrum,

, was classified into one of four subclasses as follows:

if
if
if
if

(4)

where is the local (true) SNR computed as the ratio
of envelope energies of the (clean) target speech and masker
signals, and are thresholds. The
was chosen in the training stage so as to have equal amount
of training data in the and classes. Classification
performance was not found to be sensitive to this threshold
value. In the training stage, each T-F unit of the noisy speech
was classified into one of four subclasses
according to their local SNR. The SNR threshold was set to

8 dB for the first 15 frequency bands (spanning 68–2186 Hz)
and to 16 dB for the higher frequency bands. This was done
to account for the nonuniform masking of speech across the

speech spectrum. We utilized 256-mixture2 Gaussian models
for modeling the distributions of the feature vectors in each
class. Full covariance matrices3 were used for each mixture
and the initial Gaussian model parameters were obtained by

-means clustering. The a priori probability for each subclass
was calculated by counting

the number of feature vectors belonging to the corresponding
class and dividing that by the total number of feature vectors.

C. Enhancement Stage

In the enhancement stage, the binary masks are estimated by
a Bayesian classifier which compares the a posteriori probabil-
ities of the classification models. Each T-F unit of noisy speech
signal is subsequently retained or eliminated by the estimated
binary mask and synthesized to produce the enhanced speech
waveform.

1) Bayesian Decision: The T-F units are classified as or
by comparing two a posteriori probabilities,

and . This comparison produces an estimate of
the binary mask, , as follows:

if
otherwise

(5)

where is computed using Bayes’ theorem as fol-
lows:

(6)

The a posteriori probability is computed simi-
larly.

2) Waveform Synthesis: Fig. 2 shows the block diagram of
the waveform synthesis stage. The corrupted speech signal is
first filtered into 25 bands (same bands used in the feature-ex-
traction stage). To remove across-channel differences, the
output of each filter is time reversed, passed through the filter,
and reversed again [24]. The filtered waveforms are windowed
with a raised cosine every 32 ms with 50% overlap between
segments, and then weighted by the estimated binary mask (5).
Finally, the estimated target signal is reconstructed by summing
the weighted responses of the 25 filters. Fig. 3 shows an ex-
ample spectrogram of a synthesized signal using the proposed
algorithm. In this example, the clean speech signal [Fig. 3(a)] is
mixed with multitalker babble at 5 dB SNR [Fig. 3(b)]. The
estimated binary mask [as per (5)] and synthesized waveform
are shown in Figs. 3(c) and 3(d), respectively.

2Singularities may occur in the estimation of the covariance matrix due to
insufficient amount of training data, high dimensionality, and unrestricted form
of covariance matrix. When a singularity was detected, we disabled the corre-
sponding mixture by setting the mixture weight to zero. In this paper, the effec-
tive number of mixture varied across frequency bands and ranged from 138 to
256 mixtures.

3We attempted to use diagonal covariance matrices by de-correlating the
features using transforms such as the discrete cosine transform (DCT) and
Karhunen-Loéve transform (KLT), but no significant benefit was observed. We
believe that this was due to the strong data-dependency of the AMS features.
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Fig. 2. Block diagram of the waveform synthesis stage of the proposed
algorithm.

Fig. 3. (a) Wide-band spectrogram of an IEEE sentence in quiet. (b) Spectro-
gram of a sentence corrupted by multitalker babble at �5 dB SNR. (c) Binary
mask estimated using (5), with black pixels indicating target-dominated T-F
units and white pixels indicating masker-dominated T-F units. (d) Synthesized
signal obtained by multiplying the binary mask shown in panel (c) with the cor-
rupted signal shown in panel (b).

III. ADAPTATION TO NEW NOISE ENVIRONMENTS

In the previous section, we described the enhancement of
noise-masked speech based on the estimation of binary masks.
In spite of the good performance obtained with GMMs trained
in multiple listening environments [19], a user may encounter
a new type of noise which is not included in the multiple-noise
training set. There are several ways of handling a new noisy en-
vironment. One approach is to use a multi-style noise model
trained on multiple types of noise. We tried such an approach,

but the performance was less than satisfactory4. An alternative
approach is to adapt the model parameters in the new envi-
ronment. For rapid adaptation to a new noisy environment, we
consider incrementally updating the GMM parameters to ac-
commodate the new data, starting from an initial model trained
with small amounts of data.5 Next, we describe the incremental
GMM adaptation technique used. Unlike the batch-training ap-
proach which requires access to the whole data set, the incre-
mental training approach continuously adapts the model pa-
rameters as new data arrive. Consequently, the computational
load of the incremental approach is smaller than the load of the
batch-training approach.

A. Initial Model

Access to a small amount of speech data recorded in quiet is
assumed for the training of the initial model. Such data can be
stored in memory. In a new listening environment, noise-only
data are collected and mixed with ten sentences of clean speech
(stored in memory) at SNR levels of 5, 0, 5 dB. The distribu-
tion of each class can be modeled with only a small number
of mixture components (e.g., 8), given the small number of
sentences (e.g., ten sentences) in the training data. Although
the method of splitting or adding Gaussian mixtures can be
used to increase the number of mixture components as more
data become available, we considered a simpler way of training
the GMMs with 256-mixture components from the beginning.
In the incremental training approach adopted, we only update
the parameters of each Gaussian while fixing the number of
mixtures used. The initial model was built using the following
two steps. First, 32 different eight-mixture models were created,
based on the same training data, by repeating the initial training
procedure 32 times. At each training iteration, the initial cen-
troids for the -means clustering are randomly chosen, leading
to 32 different models. In the second step, the initial model
with 256 mixtures is created by merging the 32 models trained
with eight mixtures. Since the same training data is used for the
training of all the eight-mixture models, the initial 256-mixture
model has much redundancy, suggesting that many Gaussian
components are similar to each other. The redundancy of the
models is analyzed and discussed in more detail in Section IV-A.

B. Incremental Training

We assume that an independent observation sequence is avail-
able at each updating step for the subband, and that the
observation sequence is given by

(7)

4We built a multi-style noise trained model based on 34 types of noises and
tested the model at �5 dB SNR on three types of noise environments (babble,
factory, speech-shaped noise) not included in the training. The performance,
measured in terms of detection rates (hit—false alarm rate), were 15.31%
(babble), 20.87% (factory), 15.29% (speech-shaped noise). This performance
was significantly lower than that attained by the incremental approach. It was
even worse than that obtained by the initial models which were trained using
only ten sentences.

5We also tried other adaptation techniques such as the MAP technique [25]
and the maximum-likelihood linear regression (MLLR) [26] technique based on
multi-style noise trained models, but performance was found to be poor com-
pared to that obtained with the incremental training approach.
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where is the number of frames in the update, and
is given by (1). For incremental training based on

small amounts of data, we adopted the quasi-Bayes approach
which provides an approximate solution by conducting recur-
sive Bayes estimation of the mixture coefficients [27], [28].
Consider a mixture model ,
where is the mixture weight, is the mean vector,
and is the covariance matrix of the mixture. As-
suming independence between the parameters of the individual
mixture components and the set of the mixture
weights , the initial prior pdf of model , , is
assumed to be the product of the prior pdfs [25], [27], [28]

(8)

(9)

(10)

where , , , , are the hyperparameters of the prior
density such that , , , is a vector
of dimension and is a positive definite matrix,
and denotes the trace of a matrix. The approximate MAP
estimation is obtained by finding model parameters that maxi-
mize the posterior density at each step, where denotes
the set of hyperparameters. For the training sequence , the
hyperparameters are updated as follows (the subband index is
omitted for the sake of brevity)

(11)

(12)

(13)

(14)

(15)

where

(16)

(17)

(18)

(19)

(20)

(21)

and is a forgetting coefficient, which was set to in
this work. From the initial model, the hyperparameters are ini-
tialized as

(22)

(23)

(24)

(25)

(26)

where and are the mean vector and covariance matrix
of the initial model, respectively. Finally, the parameters of the
GMMs are updated using the hyperparameters as follows:

(27)

(28)

(29)

In this paper, three iterations of the above expectation–maxi-
mization (EM) procedure were performed.

IV. EXPERIMENTAL RESULTS

Listening experiments were conducted to assess the perfor-
mance of the incrementally adapted GMMs as a function of the
number of sentences used for training. Speech was synthesized
(see Fig. 2) with the adapted GMMs using the algorithm out-
lined in Section II, and presented to normal-hearing listeners for
identification. The aim of the listening experiments is to deter-
mine the smallest number of sentences, or equivalently the min-
imum amount (in terms of duration) of training data required to
obtain significant improvements in intelligibility relative to that
of unprocessed (noise-masked) sentences.

A. Materials and Procedure

1) Speech and Noise Material: Sentences taken from the
IEEE database [29] were used as test material for the listening
experiments. The IEEE sentences are phonetically balanced
with relatively low word-context predictability. The IEEE
corpus was recorded in a soundproof booth and is available
from [1]. The sentences were originally recorded at a sampling
rate of 25 kHz and downsampled to 12 kHz. Three types of
noise were used as maskers: factory noise, babble, and train
noise. The factory noise was taken from the NOISEX database
[30], and the babble from the Auditec CD (St. Louis, MO)
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recorded by 20 talkers with equal number of male and female
speakers. The train noise was recorded inside a train running
at a speed of about 100 km/h. The maskers were randomly cut
from the noise recordings and mixed with the target sentences
at the prescribed SNRs. Each corrupted sentence had thus a dif-
ferent segment of the masker, and this was done to evaluate the
robustness of the Bayesian classifier in terms of generalizing
to different segments of the masker having possibly different
temporal/spectral characteristics.

2) Model Training: A total of 200 sentences were used to
train the incrementally updated models. The 200 sentences were
grouped into 11 sets (S1-S11): the first two sets (S1,S2) con-
tained ten sentences each, and the remaining nine sets (S3-S11)
contained 20 sentences each. The ten sentences in the first set
(S1) were used to train eight-mixture GMMs. As mentioned in
Section III-A, a total of 32 different eight-mixture GMMs were
modeled with S1 and merged to produce 256-mixture GMMs.
These models served as the initial models for the incremental
GMM training algorithm. After creating the initial model with
S1, the model was incrementally updated with each data set
starting from set S2 through S11 using the algorithm outlined
in Section III.

3) Model Redundancy: As stated in Section III-A, the initial
model has much redundancy, suggesting that many Gaussian
components are similar to each other. The degree of redun-
dancy, however, is expected to become smaller as the models
are incrementally updated with more data. To examine the
degree of redundancy in the GMMs, we used the symmetric
Kullback–Leibler divergence. For two Gaussian distributions

and , the divergence is given by

(30)

where , , , and are the mean vectors and
covariance matrices, respectively. Specifically, we calcu-

lated the divergence between two Gaussians (from all possible
combinations) in each class and counted the number of Gaussian
pairs which had a smaller divergence than a certain value (small
divergence values indicate high similarity between two distribu-
tions). Fig. 4 shows the number of Gaussian pairs averaged over
four classes and 25 subbands for the initial model and incremen-
tally updated models. The initial model was trained with ten
sentences, and then updated with another ten sentences. After
that, 20 sentences were used for every update. As can be seen
from this figure, as the models are incrementally updated, the
number of Gaussian pairs with smaller divergence than a certain
value decreases, which in turn implies a decrease in the model
redundancy.

Fig. 4. Plot showing the number of Gaussian pairs with Kullback–Leibler di-
vergence smaller than a certain value. This number was averaged over 25 sub-
bands and four classes.

B. Listening Tests

Nine normal-hearing listeners participated in the listening
experiments. The normal-hearing listeners were paid for
their participation. The listeners participated in a total of 21
conditions ( training sets maskers unprocessed
conditions). The six training sets included respectively: 10, 20,
40, 80, 140, and 200 sentences. The duration of each sentence
was approximately 2.5 s. The experiments were performed
in a soundproof room (Acoustic Systems, Inc.) using a PC
connected to a Tucker-Davis system 3. Stimuli were played to
the listeners monaurally through Sennheiser HD 250 Linear II
circumaural headphones at a comfortable listening level. The
listening level was controlled by each individual but was fixed
throughout the test for a particular subject. Prior to the sentence
test, each subject listened to a set of noise-masked sentences to
become familiar with the testing procedure. Five-minute breaks
were given to the subjects every 30 minutes. A total of 20
sentences were used per condition, and none of the sentences
were repeated across conditions. The order of the conditions
was randomized across subjects. Listeners were asked to write
down the words they heard, and intelligibility performance was
assessed by counting the number of words identified correctly.

C. Results: Intelligibility Evaluation

GMMs adapted using 10–200 sentences were used to syn-
thesize (based on the algorithm presented in Section II) speech
mixed with babble ( 5 dB SNR), factory noise ( 5 dB SNR)
and train noise ( 10 dB SNR). The synthesized speech was
presented to human listeners for identification, and the results,
scored in terms of percentage of words identified correctly,
are plotted in Fig. 5 as a function of the amount of training
data used (i.e., accumulated number of sentences used in each
model). The word identification scores obtained with GMMs
batch-trained with 390 sentences [19] are plotted for compar-
ison. As expected, word identification accuracy improved as
more training data were included. Performance in the babble
conditions improved substantially from 15% correct obtained
with unprocessed sentences to 55% correct with 20-sentence
models, and to 80% correct with 140-sentence models. While
the initial model trained with ten sentences provided improve-
ment in the case of babble, a larger number of sentences was
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Fig. 5. Mean intelligibility scores (by normal-hearing listeners) for corrupted
(unprocessed) sentences (denoted as Unproc) and sentences synthesized using
incrementally updated models as a function of the number of accumulated sen-
tences used in training. The intelligibility scores obtained with batch-trained
models based on 390 sentences are also shown for comparison [19]. Error bars
indicate standard errors of the mean.

required to yield a better score in the case of factory and train
noise. Large improvement in intelligibility was also noted with
factory noise, when 80 or more sentences were used to train
the GMMs. The improvement in train noise conditions was
smaller, partly because we were limited by ceiling effects (e.g.,
performance saturated near 90%–100%). The intelligibility
of speech mixed with train noise is considerably higher than
that obtained in babble (even at lower SNRs) because the train
noise is modulated, and as such it provides to the listeners
the opportunity to “glimpse” the target during the silent gaps
or waveform “dips” of the train noise [1, Ch. 4]. In brief, the
improvement in intelligibility was found to be statistically
significant for all three maskers tested.

Analysis of variance (ANOVA) [31], with repeated mea-
sures, indicated a significant effect ( ,
for babble; , for factory noise;

, for train noise) of the amount of
training data on sentence intelligibility. Post-hoc tests, ac-
cording to Fisher’s least significant difference (LSD) [31], were
run to assess significant differences in intelligibility scores in
the various conditions. For babble, the score obtained with ten
sentences was significantly higher than the score
obtained with unprocessed (noise-masked) sentences. The score
obtained with 80-sentence models did not differ significantly

from the score obtained with the 200-sentence
model. The score obtained with 140 sentences was not signif-
icantly higher than the score obtained with 200
sentences, but was higher than the score obtained with 80 sen-
tences. For factory noise, asymptotic performance was attained
with 80-sentence models. Scores obtained with 80 sentences
did not differ significantly from scores obtained
with 200 sentences. For the train noise, scores obtained with 80
sentences did not differ significantly from scores
obtained with 200 sentences. Furthermore, the scores obtained
with 20-sentence models was higher than that obtained with
unprocessed (noise-masked) sentences, and the difference was
marginally significant . The score obtained with
80-sentence models was significantly higher than
the score obtained with unprocessed sentences.

In summary, the above statistical analysis indicates that in
most cases, large gains in intelligibility can be obtained with
as few as ten sentences and as many as 80 sentences. For two of
the three maskers tested, asymptotic performance was obtained
with 80 sentences. For babble, performance obtained with batch
training (390 sentences) was comparable to that attained with
140 sentences. That was not the case for factory noise, as the
performance with 390 sentences was significantly higher than
that obtained with 200 sentences. Overall, a minimum of 80
sentences was required to achieve substantial gains in intelligi-
bility, relative to that obtained with unprocessed (noise-masked)
sentences, for the three maskers tested. This amount of training
data is considerably smaller than what has been used by others
for estimating the binary mask (e.g., [21]) or estimating the gain
function [8], [10]. In [21] for instance, approximately 1–2 hours
of training data were required. Aside from the limited amount
of training data required, another advantage of the proposed ap-
proach is that the GMM training used in this work does not re-
quire access to a labeled speech corpus, while other studies [21],
[32], [33] required the use of accurate F0 detection algorithms
or voiced/unvoiced segmentation algorithms.

As mentioned earlier, the GMMs were trained with data
embedded in 5 to 5 dB SNR. This raises the question as to
whether the performance of the GMMs would degrade if tested
in an environment with SNR level outside the range of 5 to 5
dB. To test this SNR mismatch issue, we performed additional
listening experiments wherein the GMMs were trained in 5
to 5 dB SNR levels, but tested at 10 dB SNR. Three additional
listeners participated in the intelligibility listening tests, and the
results are shown in Fig. 6. As can be seen, intelligibility scores
were high and unaffected for the babble and train maskers.
Consistent with the data in Fig. 5, 20–40 sentences seemed to be
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TABLE I
HIT (HIT) AND FALSE ALARM RATES (FA) OBTAINED USING THE INCREMENTALLY UPDATED MODELS

Fig. 6. Mean intelligibility scores (by normal-hearing listeners) for corrupted
(unprocessed) sentences (denoted as Unproc) and sentences synthesized using
incrementally updated models as a function of the number of accumulated sen-
tences used in training. The GMMs were trained using data embedded in �5
to 5 dB SNR, but tested at 10-dB SNR. The intelligibility scores obtained with
batch-trained models based on 390 sentences are also shown for comparison.
Error bars indicate standard errors of the mean.

sufficient to reach high levels ( correct) of performance.
For the factory masker, 80 sentences were needed at least to
reach high levels of performance. Overall, the data shown in
Fig. 6 do not exhibit a sensitivity to the SNR level and for
the most part are in agreement and consistent with the data
obtained in Fig. 5.

D. Results: Objective Evaluation

We attribute the large gains in intelligibility obtained with the
proposed algorithm (Section II) to the accurate classification of
T-F units into target-dominant and masker dominant T-F units.
To quantify the accuracy of the GMM-based SNR classifier, we
computed the hit (HIT) and false alarms (FA) of the same test
sets used in the listening experiments. The classification accu-
racy, expressed in terms of HIT and FA, of the trained GMM
classifiers is tabulated in Table I as a function of the number of
accumulated sentences used in the training. We also calculated
the error rates assessing the classifier’s performance without
making a distinction between miss or false alarm errors. In terms
of reduction in error rates (computed relative to ten-sentence
models), substantial reduction was noted in all three maskers
tested and ranged from a 34% error reduction (obtained with
train noise with 200-sentence models) to 38% error reduction
(obtained with babble with 200-sentence models).

In terms of detection rates, the hit rate improved as more
training data were included and in most cases the false alarm
rate decreased. Perceptually, the two types of errors that can
be introduced, namely miss ( -HIT) and false alarm, are
not equivalent [16]. This is so, because the false alarm errors
will possibly introduce more noise distortion, as T-F units that
would otherwise be zeroed-out (presumably belonging to the
masker) would now be retained. The miss errors will likely in-
troduce speech distortion, as these errors are responsible for ze-
roing out T-F units that are dominated by the target signal and
should therefore be retained. To account for the combined ef-
fect of both errors (miss and false alarm), we propose the use
of the difference metric, HIT-FA. Table I tabulates the dif-
ference metric as a function of the number of accumulated
sentences used in the training. As can be seen, the value of the
difference metric increases as more training data are included
suggesting possibly a correlation between and speech intel-
ligibility scores. To examine this, we computed the correlation
between the difference metric and speech intelligibility scores
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Fig. 7. Scatter plots showing the correlation between human listener’s recog-
nition scores and the difference metric HIT-FA.

using Pearson’s product–moment coefficient. The resulting cor-
relation coefficient was consistently high
for the three maskers tested. Scatter plots of and speech in-
telligibility scores are shown in Fig. 7. As demonstrated by the
data in Fig. 7, the difference metric can serve as an effective
objective measure for predicting speech intelligibility of algo-
rithms that estimate the binary mask. Previous studies have used
an SNR measure [32] computed based on the normalized differ-
ence between the signals synthesized (in the time domain) using
the ideal and estimated binary masks. While the SNR measure
is reasonable, it has not been validated with listening experi-
ments; hence, it is not clear whether the SNR measure corre-
lates with the subjective quality or intelligibility of speech syn-
thesized using estimated binary masks. In contrast, the proposed
difference metric is relatively simple to compute and has been
shown (Fig. 7) in the present study to predict reliably speech in-
telligibility.

Fig. 8 compares performance, in terms of the difference
metric (HIT-FA), between the batch training and the in-
cremental training methods. Performance (in terms of the
difference metric) with the incremental training approach is

Fig. 8. Performance (expressed in terms of the difference between the hit rate
and false alarm rates, i.e., HIT-FA) comparison between models which were ei-
ther incrementally updated or batch trained. Performance with the batch-trained
models is plotted only for a large number of sentences, as that was required to
train GMMs with a large number of mixtures.

slightly lower than that obtained using the batch training ap-
proach when more than 160 sentences are used for training, but
it is comparable to that obtained by the batch training approach
when fewer than 160 sentences are used.

It should be noted that the hit rates obtained by the GMM
binary classifiers (Table I) are substantially higher than those
obtained with conventional noise-reduction algorithms [19],
[34], which estimate the SNR in each T-F unit using the
decision-directed approach. When tested in three different
environments, the MMSE algorithm [11], for instance, yielded
hit rates in the range of 57%-68%, and false alarm rates in
the range of 52%-66% [19]. The false rate obtained with the
MMSE algorithm is substantially higher than that attained by
the GMM classifiers (Table I), and the hit rate is substantially
lower than that obtained by the GMM classifiers. Similar
performance was also obtained when the Wiener algorithm was
used [19]. This outcome might explain, at least, partially why
current noise reduction algorithms, even the most sophisticated
ones, do not improve speech intelligibility [2].

V. CONCLUSION

Large gains in intelligibility were achieved with the proposed
algorithm using a limited amount of training data. In most con-
ditions, a minimum of 80 sentences was found to be sufficient to
obtain significant improvements in intelligibility. The intelligi-
bility of speech processed by the proposed algorithm was sub-
stantially higher than that achieved by human listeners listening
to unprocessed (corrupted) speech. We attribute this to the ac-
curate classification of T-F units into target- and masker-domi-
nated T-F units, and subsequently reliable estimation of the bi-
nary mask. The accurate classification of T-F units into target-
and masker-dominated T-F units was accomplished with the
use of neurophysiologically motivated features (AMS) and care-
fully designed Bayesian classifiers (GMMs). Unlike the mel-
frequency cepstrum coefficients (MFCCs) [35] features com-
monly used in speech recognition, the AMS features capture in-
formation about amplitude and frequency modulations, known
to be critically important for speech intelligibility [36]. An ob-
jective measure based on the classification accuracy (HIT-FA)
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of the Bayesian classifier was also proposed for predicting in-
telligibility of speech synthesized by algorithms that estimate
the binary mask. This measure was found to predict reliably

speech intelligibility. Overall, the findings from this
study suggest that algorithms that can estimate (or classify) reli-
ably the SNR in each T-F unit can improve speech intelligibility.
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